
Transactions on the Multiversion B+-Tree

Tuukka Haapasalo
Helsinki University of

Technology
Espoo, Finland

thaapasa@cs.hut.fi

Ibrahim Jaluta
Helsinki University of

Technology
Espoo, Finland

ijaluta@cs.hut.fi

Bernhard Seeger
Philipps-University Marburg

Marburg, Germany
seeger@mathematik.uni-

marburg.de
Seppo Sippu

University of Helsinki
Helsinki, Finland

sippu@cs.helsinki.fi

Eljas Soisalon-Soininen
Helsinki University of

Technology
Espoo, Finland
ess@cs.hut.fi

ABSTRACT
The multiversion B+-tree (MVBT) by Becker et al. assumes
a single-data-item update model in which each new ver-
sion created for a data item is given a timestamp that is
unique across the entire MVBT. In this paper, we extend the
MVBT model with multi-action transactions such that all
(final) data-item versions created by a transaction are given
the same timestamp. We show that the MVBT algorithms
can be modified to work in a setting in which multiple read-
only transactions and a single updating transaction operate
concurrently in snapshot isolation on the MVBT, without
compromising the asymptotically optimal time complexity
of key inserts, key deletes, and key-range scans on any ver-
sion. The structural consistency and balance of the MVBT
is guaranteed by short-duration latching of pages, redo-only
logging of structure modifications (version splits, key splits
and page merges), and redo-undo logging of key insertions
and deletions. The redo pass of our ARIES-based restart-
recovery algorithm always produces a structurally consis-
tent and balanced MVBT on which any undo action by
a backward-rolling updating transaction can be performed
logically if a physical undo is not possible. The standard
steal-and-no-force buffering policy is assumed.

1. INTRODUCTION
In many applications, historical data needs to be stored

alongside current data. Examples of such applications
include medical-record databases, banking software, and
moving-object databases, among others [17]. To maintain
good query-time and space requirements, a special database
structure is required that can store historical versions of
data items in a compact form. The version information
attached to data items adds a new dimension—the tempo-
ral dimension—to the one-dimensional set of non-versioned
data items indexed by their primary keys. Thus, it is not

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

surprising that one confronts problems that are similar to
those found in general-purpose index structures for mul-
tidimensional data, such as R-trees [6], when developing
an efficient index structure for versioned data. These
structures cannot guarantee a logarithmic time complexity
simultaneously for insertions, deletions and searches of data
items.

An important goal in indexing versioned data is to guar-
antee that key-range searches for data items belonging to a
given database version are as efficient as for non-versioned
data. More specifically, searching for the data items of
a given database version v that belong to a given key
range should not take significantly much more time than
O(log mv + r), where mv is the total number of data items
in version v and r is the number of data items in version v
whose key belongs to the given key range. The multiversion
B+-tree, or MVBT, by Becker et al. [1] possesses this
desired property, besides guaranteeing an O(log mv) time
bound for creating a new version of a data item.

The data-update model adopted by most proposals for
indexing versioned data, including the MVBT model [1], as-
sumes that each update action creates a new version of the
item (identified by a unique key), so that the version num-
bers are unique across all versions of all data items. Fol-
lowing Salzberg et al. [17] and Lomet et al. [12], we assume
a multi-action-transaction approach in which all data-item
versions created by a transaction get the same version num-
ber, unless the transaction updates a data item more than
once, in which case only the final data-item version gets the
version number and is stored in the database. In this ap-
proach, each data-item version is still uniquely identified by
the pair (k, v), where k is the key of the data item and v is
the version number, but the version numbers are only unique
across versions of the data item with key k, for each fixed k.

We assume that the creation of a new version of a data
item with key k is always based on the most recent com-
mitted version of the data item with key k. Thus, as with
Becker et al. [1], the versions of a data item with key k always
form a linearly ordered version history without any branch-
ing (or diverging) versions. This is consistent with multi-
version concurrency-control protocols such as snapshot iso-
lation and is also the approach adopted by the transaction-
time temporal database engine Immortal DB by Lomet et
al. [11].

The data-item versions created by a transaction remain
in the database only if the transaction commits; otherwise
the transaction is rolled back and the created versions are
deleted. Thus, an index structure for versioned data must
also support physical deletion of uncommitted versions, even
though all committed versions of all data items are to be
stored permanently for an indefinite time. This issue has
not been addressed in many proposed index structures for
temporal data [10, 17, 9]. In other proposed structures [13,
11, 12], rolling back transactions may lead to pages with
very few entries (or none at all).

We will use the terms timestamp and version number in-
terchangeably in this paper, although the terms themselves
may be used to imply different semantics. Our structure as-
sumes a transaction-time model [19], in which the data items
become valid once they have been inserted into the database
and invalid once they have been deleted from the database.
The mapping between real time and version numbers in the
database is beyond the scope of this article, although any in-
creasing integer numbers can be used as version numbers (as
long as each data item created by the same transaction gets
the same version number; and the version range of each data
item deleted by the same transaction is terminated with the
same version number).

In this paper, we extend the the single-data-item update
model assumed by the MVBT algorithms [1] to the multi-
action-transaction update model outlined above. In our
model, the MVBT is periodically updated by a multi-action
transaction that can roll back some or all of its updates
at any time. The updates are made recoverable by an
ARIES-based recovery algorithm [14], and a multiversion
concurrency-control protocol (such as snapshot isolation) [2,
4] can be used for guaranteeing transactional isolation. Our
algorithms work in a concurrent setting in which multiple
read-only transactions and a single updating transaction
operate on the MVBT simultaneously. Important applica-
tion areas where this setting is perfectly sufficient include
data stream and RFID stream management systems. The
setting with multiple concurrent updating transactions is
discussed in the conclusions.

Our algorithms have the following properties: (1) all data-
item versions created by an updating transaction are given
the same version number, consistently with previous trans-
actional versioning schemes; (2) many read-only transac-
tions, each reading consistently from any committed ver-
sion of the database, can run concurrently with a single
updating transaction; (3) all range-query and update ac-
tions retain the asymptotic time complexities of the MVBT
algorithms; (4) the consistency and balance of the MVBT
structure during normal processing are maintained by short-
duration latching of pages, assuming the standard steal-and-
no-force buffering policy; (5) the consistency and balance of
the MVBT structure during transaction aborts and system
crashes are maintained by redo-undo logging of the update
actions of transactions and by redo-only logging of struc-
ture modifications (splits and consolidations); (6) at most
five MVBT pages need to be kept write-latched during a
structure modification; (7) the redo pass of our ARIES-
based restart recovery algorithm will always produce a con-
sistent and balanced MVBT on which the undo actions of
the backward-rolling updating transaction (if any) can be
performed logically if a physical undo is impossible.

We begin in Sec. 2 by discussing the main features of the

MVBT and the problems we encountered when trying to use
the original MVBT algorithms by Becker et al. [1] for trans-
actions that consist of multiple updates. Next, in Sec. 3,
we define formally our extended MVBT structure, called
the transactional multiversion B+-tree (TMVBT), giving
detailed invariants that must be retained by any update ac-
tion and structure-modification operation on the TMVBT.
Then, in Sec. 4, we list the actions that a transaction operat-
ing on the TMVBT may contain; here we assume that mul-
tiple read-only transactions are operating on the TMVBT
concurrently with one updating transaction that may con-
tain both read and update (insert and delete) actions. In
Sec. 5 we give algorithms to implement these actions, and
in Sec. 6 we present the structure-modification operations
(key splits, version splits, and merges) that are needed in
the algorithms in order to keep the TMVBT in a consistent
and balanced state. Finally, in Sec. 7, we compare our al-
gorithms to previous work on indexing temporal data, and
in Sec. 8, we present our conclusions and outline our fu-
ture work on how to use the TMVBT in a fully concurrent
setting.

2. MULTIVERSION B+-TREE
The multiversion B+-tree (MVBT) algorithms proposed

by Becker et al. [1] modify the standard B+-tree algorithms
to store multiple versions. While the pages in a standard
B+-tree contain entries of the form (k, w), where k is a key
value and w is the data part of a data item (in the case of a
leaf page) or the page identifier of a child page (in the case
of a non-leaf page), the pages in an MVBT contain entries of
the form ((k, [v1, v2)), w), where [v1, v2) is the version range
of the entry. Initially, the version range of a newly created
entry is unbounded, that is, of the form [v1,∞). The data
part w of a leaf-page entry consists of the values of other
attributes of the data item (in the case of a sparse index) or
a record identifier of the data item stored elsewhere (in the
case of a dense index).

Each page p has a key range, denoted kr(p), and a ver-
sion range, denoted vr(p), such that p contains only entries
whose version range overlaps with vr(p) and whose key be-
longs to kr(p). The pages at any given height in the MVBT
partition the two-dimensional key-version space into disjoint
rectangular areas vr(p)×kr(p). All newly created pages have
initially an unbounded version range, that is, vr(p) is of the
form [v,∞). A page with an unbounded version range is
called a live page. An entry with a version range of the form
[v,∞) residing in a live page is called a live entry.

Structure modifications on the MVBT are mostly based
on the version-split operation (possibly directly followed by
a key split). In a version split, a formerly live page p is killed,
that is, p is split at the current time vcur , and a new live
copy p′ of p is created. The old page’s version range [v,∞)
is cropped to [v, vcur), and the new page’s version range is
set to [vcur ,∞). All the live entries in p are copied to p′.
Page p is now considered a dead page and is only used for
historical queries, and the new page p′ is used for current-
version queries. Dead pages are never modified again, al-
though they might be deleted later to save space (see the
discussion of purging old versions in the MVBT article by
Becker et al. [1]).

When a non-leaf page is version-split, the copying of en-
tries creates a new parent, in addition to the old one(s),
for the child pages pointed to by those entries. Thus, the

MVBT is not a tree but a directed acyclic graph, which may
have several roots. When a root page is split, a new root
page is created. However, the old root page is still used as
a starting point when searching for historical entries. To
accomplish this, a separate structure called root∗ is used to
store all the different roots of the MVBT. The root∗ struc-
ture can be implemented, for example, as a B+-tree that
contains pointers to the root pages, indexed by their cre-
ation versions. It is assumed that the number of different
roots is small, and that the root∗ structure may even fully
reside in main memory.

The main problems with the MVBT algorithms arise if we
try to apply them without increasing the version number of
the database between the updates. Consider, for example,
simply inserting entries with consecutive keys 1, 2, 3, . . . to
the MVBT. The scenario is shown in Figure 1, with page ca-
pacity of three entries per page. The first three entries can
be inserted without problems. The fourth insertion leads to
an overflow and therefore a version split is triggered, which
in turn causes the version range of the old page and its en-
tries to degenerate into an empty interval [1, 1). This page
does not hold any relevant information as it is no longer
a part of any version of the database. The pages created
earlier on by the same transaction are the real cause of the
problem. Our aim is to extend the MVBT algorithms by ap-
plying B+-tree-style structure modifications on these pages.
In this problem scenario, the page could be key-split directly,
without first version-splitting it.

Page p, [1,∞)
((1, [1,∞)), w1)

(a) Insert key 1

Page p, [1,∞)
((1, [1,∞)), w1)
((2, [1,∞)), w2)
((3, [1,∞)), w3)

(b) Insert keys 2–3

Page p, [1, 1) Page p′, [1,∞) Page p′′, [1,∞)
((1,[1, 1)), w1)
((2,[1, 1)), w2)
((3,[1, 1)), w3)

((1, [1,∞)), w1)
((2, [1,∞)), w2)

((3, [1,∞)), w3)
((4, [1,∞)), w4)

(c) Insert key 4

Figure 1: Insertion of key 4 causes an invalid split

As stated before, an index structure for versioned data
should support physical deletion of uncommitted entries, to
allow for total or partial rollbacks of transactions. Also,
when a transaction deletes a key that it has itself inserted,
physical deletion should be applied. If we try to delete en-
tries like these by using the MVBT algorithms (with physical
deletion added), the number of live entries in a page may fall
below the acceptable limit. In a B+-tree, the situation could
be remedied with a page merge. In the MVBT, a merge is
only possible after a version split. This is problematic, if the
page has been created during the execution of the aborting
transaction. In this case, the resulting killed page will have
an empty version range. Merging without version-splitting
is not trivial, because pages may have multiple parents.

3. TRANSACTIONAL MVBT
In this section, we present our modified multiversion B+-

tree, called the transactional multiversion B+-tree, or the

TMVBT, for short. As it turns out, not many changes are
needed to the structure of the MVBT of Becker et al. [1] to
overcome the problems reported in the previous section.

The page format in the TMVBT is identical to that of
the MVBT, with addition of recovery information required
for our ARIES-based recovery, such as a Page-LSN field that
stores the log sequence number (LSN) of the log record of
the latest update on the page. We also assume that each
page p explicitly stores the version range, vr(p), and the key
range, kr(p), of the page and also the height of the page,
denoted height(p), which is 1 for all leaf pages.

vcur The current, committed version.
vact The active version.
B The capacity of pages; for convenience, as-

sumed to be same for all pages.
mv The number of live entries of version v in

the database.
mp

v The number of live entries of version v in
page p.

height(p) The height of page p.
children(p) The set of children of index page p.
parent(p) The set of parents of page p; where

p′ ∈ parent(p) ⇔ p ∈ children(p′).
kr(p) The key range of page p.
vr(p) The version range of page p.
kvr(p) The key-version range of page p; a rectan-

gular region in key-version space, kvr(p) =
(kr(p), vr(p)).

min The minimum number of entries that must
be alive at each page that is alive.

s The minimum amount of user actions (in-
serts or deletes) required after a struc-
ture modification before another one is re-
quired; 0 ≤ s ≤ min

mins The minimum number of entries in a new
page; mins = min +s.

maxs The maximum number of entries in a new
page, maxs = B− s and maxs ≥ 2×mins.

root∗ A separate search structure for locating
the root pages for different versions.

Table 1: Terms and variables

In the following discussion we will use the terms and
variables listed in Table 1. The variables min, mins and
maxs correspond to the MVBT condition variables weak
version, strong version underflow, and strong version over-
flow. These affect the height and storage consumption of
the structure and the frequency of structure-modification
operations required. The weak version condition variable
min controls the height of the structure as it controls the
minimum fan-out at each level of the TMVBT for every
version. The strong version condition variables mins and
maxs control how many actions are at least required after
a structure-modification operation before another structure
modification is needed on the page (this is the variable s in
the formulas). Note that maxs ≥ 2×mins must hold so that
a page with maxs entries can always be split into two pages
with at least mins entries each. An example setting for
the variables with page capacity B = 100 is min = 20 and
s = 20. This makes mins = 40 and maxs = 80. After a page
split the entry counts of the new pages must be between
40 and 80 entries. Therefore there will always be space to

insert at least 20 new entries or delete 20 old entries before
the page is full or the number of live entries falls below 20.

Although the presentations of the variables differ from the
previous definition, we can show that the variables are the
same as in the MVBT article [1]. The previous definition
stated that min = d = b/k, mins = (1 + ε)× d and maxs =
(k − ε) × d, with b = kd = B, and k and ε being variables
that can be selected. If we assign s = εd, we get mins =
d + εd = min+εd = min+s, and maxs = kd − εd = B − s,
which are the definitions used in this paper.

As discussed in the introduction, we assume that at any
time at most one updating transaction on the TMVBT is
active. We denote by vact the version number that an ac-
tive updating transaction assigns to the data-item versions
it creates. We denote by vcur the version number assigned
to the data-item versions created by the most recent com-
mitted transaction that has inserted its updates into the
TMVBT. We call an entry with key range [vact ,∞) an ac-
tive entry and all other entries inactive entries. The active
entries have all been created by the currently active updat-
ing transaction. Similarly, active pages are pages created by
structure-modification operations during an active updating
transaction. Active pages may only contain active entries.
Thus, the version ranges of all entries in active pages are
the same, and therefore the entries cannot have overlapping
key ranges. Because of these properties, algorithms such as
the standard B+-tree key splits and merges can be applied
to active pages. In these operations, the active entries are
physically moved from one page to another. Thus, active
pages cannot have more than one parent, whereas inactive
pages—live or dead—can.

We now define formally the conditions that must be sat-
isfied by any structurally consistent and balanced TMVBT.
A TMVBT is a directed graph that contains pages at dif-
ferent levels, or heights. Pages at the bottom level (at
height(p) = 1) are leaf pages, which contain (references
to) the data items. All pages above the bottom level (at
height(p) > 1) are index pages, which contain links to child
pages. All children are at a height that is one lower than
the height of the parent, such that ∀p∀p′(p′ ∈ children(p) ⇒
height(p) = height(p′) + 1). As all the links go downward
in the graph, the graph is acyclic, and therefore a directed
acyclic graph (DAG).

Each page in a TMVBT is associated with a key-version
range kvr(p) = ([kmin, kmax), [vmin, vmax)). Each level of
the TMVBT graph partitions the entire key-version space
into disjoint key-version ranges, so that ∀p∀p′((p 6= p′ ∧
height(p) = height(p′)) ⇒ kvr(p) ∩ kvr(p′) = ∅). This holds
for both index pages and leaf pages.

As stated above, index pages contain child links to pages
at a lower level. More precisely, an index page p at height(p)
contains links to all pages at height(p)−1 whose key-version
range intersects with the key-version range of the parent
page p. Formally, ∀p∀p′((height(p) = height(p′)+1∧kvr(p)∩
kvr(p′) 6= ∅) ⇒ p′ ∈ children(p)). Also, the key range of
the child page must be a subset of the parent page’s key
range, so that ∀p∀p′(p′ ∈ children(p) ⇒ kr(p′) ⊂ kr(p)).
Thus, a page may have multiple parent pages if the version
range of the child extends outside the version range of the
parent. For example, there can be a link to a child page
that is alive from version v1 to v3 in parent pages p and p′

if there is a version v2 that separates these pages, so that
vr(p) = [v0, v2) ∧ vr(p′) = [v2, v4) ∧ v0 ≤ v1 < v2 ≤ v3 < v4.

The key-version ranges in index-page entries are called
routers to child pages. An entry in an index page that points
to a child page p is a pair (r, p), where the router r is the
intersection of the key-version range of the parent index page
and that of the child page. Initially, the router to page p in
the parent page is kvr(p) = (kr(p), vr(p)). When a version
split is done on the parent page, the router key-version range
in the parent is cropped to the active time, even though the
child page’s version range remains unbounded.

For convenience, we will use the same notation for entries
in leaf pages. A leaf-page entry ((k, [v1, v2]), w), for key k
and data-item identifier w, that is alive in versions [v1, v2)
is, therefore, denoted by (([k, k + 1), [v1, v2)), w). In this
way we can use the same algorithms for manipulating the
contents of both leaf and index pages.

Any consistent and balanced TMVBT is required to sat-
isfy the following three invariants. First, by invariant

vact = vcur ∨ vact = vcur + 1, (1)

there can be only one updating transaction active at a time.
When vcur = vact , there is no updating transaction active,
and no insert or delete actions can be executed. By invariant

∀p∀v




mp
v ≥ min∨

mp
v = 0∨

mp
v = mv∨

(mp
v ≥ 2 ∧ p ∈ root∗)


 (2)

each page must contain either at least min or zero entries of
each version. That is, there can be no pages with only n ∈
[1, min) entries that are alive at version v. The exceptions
are the situations in which all the live entries of the TMVBT
are on a single root page, or the page is a root page with
n ∈ [2, min) links to leaf pages. This invariant guarantees
that all structure-traversal operations within any database
version work within time bounds that are logarithmic in the
number of live entries at that version. More formally, the
worst-case time bound for tree traversal is O(logmin mv) for
all versions v. Invariant

∀p(vr(p) = [vact ,∞) ⇒ | parent(p)| ≤ 1) (3)

states that an active page cannot have more than one par-
ent page. This invariant is the foundation of the TMVBT
algorithms, and it follows from the fact that all levels of the
TMVBT graph partition the key-version space into disjoint
regions. The reasoning is that there can be only one parent
whose version range intersects with that of a page created
at vact (because there can be no parent pages created after
the active version); and the child page’s key range must be
a subset of the parent page’s key range (so there can be no
other parent with an intersecting key range).

An example of a structurally consistent and balanced
TMVBT is given in Figure 2. The white pages represent
live pages, and the darker ones dead pages. The page size
limits in this example are chosen for illustration purposes
only; they do not fill the requirements set out in this pa-
per. The example has been generated by our visualization
software with the following action sequence.

• Transaction 1: insert data items with keys 1–9. Note
that these entries all have the same timestamp (i.e.,
the same start version).

• Transaction 2: delete data items with keys 7–9; insert
data items with keys 10–15.

Figure 2: An example of a TMVBT. The page header format and the format of index-page entries is ((key range,
version range), page identifier). The format of leaf-page entries is ((key, version range), data-item identifier), but the data-item
identifiers have been left out for clarity. White pages are live pages, the darker pages are dead pages. This TMVBT was
created by transactions 1 and 2 with transaction 1 inserting keys 1–9, and transaction 2 first deleting keys 7–9 and then
inserting keys 10–15.

Figure 2 shows that page P2 containing entries with keys
1–3 is shared by both roots of the TMVBT. Note that
page P2 is alive but not active, as it contains entries of
previous versions. Thus, it is possible for this page to have
more than one parent. The pages P6–P9 are active and con-
tain only entries of the most recent version. Note also that
the index page P8 is active even though it contains a router
to the inactive page P2, because the router itself is active.

The first insertions by transaction 1 triggered two key-
splits (pages P2 → P3 → P5), and a tree height increase
(root page P4). The deletions by transaction 2 triggered
a consolidation operation (pages P5 ∧ P3 → P6) and the
insertions caused leaf-page key-splits (pages P6→ P7→ P9)
and a root page version-split (root pages P4 → P8).

Figure 3: Initial TMVBT. This TMVBT has been cre-
ated by transaction 1 inserting keys 1–6 and transaction 2
inserting keys 7–8.

Figures 3–5 show another example of the TMVBT page
operations. In Figure 3, the tree contains historical entries
inserted by transaction 1, and some entries inserted by trans-
action 2.

Figure 4 shows the result of a version split after transac-
tion 2 tried to insert key 9 to the full page P3. The page P3
was version-split into pages P5 and P6. The old data is left
stored in the dead page P3, and active copies of the current
data have been created to pages P5 and P6. Note that active
contents have been physically moved away from page P3.

Figure 4: After inserting entry with key 9. Transac-
tion 2 has caused a version-split by inserting key 9.

Figure 5 shows the status of the database after transac-
tion 2 has deleted entries 4–9. Deleting the active entries has
caused the pages to underflow and to consolidate by merg-
ing them with sibling pages. Note that the page P5 was
deallocated when it was merged with a sibling. When the
last two active pages were merged, the (current version) tree
height was decreased so that all the live entries are in the
root page P6. The auxiliary structure root∗ contains root
pointers to pages P4 (for version 1) and P6 (for version 2).

4. ACTIONS OF TRANSACTIONS
We allow two kinds of transactions to operate concurrently

on the TMVBT: one or more read-only transactions and
at most one updating transaction at a time. A read-only
transaction may contain the following actions:

• begin-read-only: begins a new read-only transac-
tion; this action records the value vbegin ← vcur for
the transaction.

• query(key k, version v): retrieves the data item
(k, w) for which the TMVBT contains a leaf-page entry
((k, [v1, v2)), w) with v1 ≤ v < min{v2, vbegin+1}; thus,
the transaction is allowed to see only those versions
that were committed before the transaction began.

• range-query(range [k1, k2), version v): retrieves
the set of data items (k, w) for which the TMVBT

Figure 5: After deleting most of the entries. Trans-
action 2 deleted keys 4–9, thus shrinking the current version
search tree to a single page.

contains leaf-page entries ((k, [v1, v2)), w) with v1 ≤
v < min{v2, vbegin + 1} and k1 ≤ k < k2.

• commit-read-only: commits the transaction by re-
moving the transaction from the system.

An updating transaction may contain the following ac-
tions:

• begin-update: begins a new updating transaction;
this action increments the active-version counter vact .

• query(key k): retrieves the data item (k, w) for
which the TMVBT contains a live leaf-page entry
((k, [v1,∞)), w); thus, the action reads the committed
current version of the data item (if the transaction
has not updated the data item) or the uncommitted
active version (otherwise).

• range-query(range [k1, k2)): retrieves the set of
data items (k, w) for which the TMVBT contains live
leaf-page entries ((k, [v1,∞)), w) with k1 ≤ k < k2.

• insert(key k, data w): a forward-rolling action that
is legal when the TMVBT contains no live leaf-page
entry of the form ((k, [v,∞)), w′); the action inserts
the leaf-page entry ((k, [vact ,∞)), w).

• delete(key k): a forward-rolling action that is legal
when the TMVBT contains a live leaf-page entry of
the form ((k, [v,∞)), w); the action either (1) replaces
the leaf-page entry ((k, [v,∞)), w) by ((k, [v, vact)), w)
when v < vact ; or (2) removes the leaf-page entry
((k, [v,∞)), w) when v = vact .

• commit-update: commits an updating transaction;
this action increments the current-version counter vcur .

• abort: labels the updating transaction as aborted and
starts the backward-rolling phase.

• undo-insert(log record r): a backward-rolling ac-
tion that undoes the insert action logged with the log
record r.

• undo-delete(log record r): a backward-rolling ac-
tion that undoes the delete action logged with the log
record r.

• finish-rollback: finishes the backward-rolling phase
of an aborted updating transaction; this action decre-
ments the active-version counter vact .

An aborted updating transaction is an action sequence
consisting of the following actions: (1) a begin-update ac-
tion, (2) a forward-rolling phase consisting of zero or more
query, range-query, insert, and delete actions, (3) an
abort action, (4) a backward-rolling phase that consists,
in reverse order, of the undo actions for the insert and
delete actions of the forward-rolling phase, and (5) a finish-
rollback action.

To allow for partial rollbacks, a transaction may also con-
tain actions set-savepoint p and rollback-to-savepoint
p in its forward-rolling phase. An action rollback-to-
savepoint p is followed by the undo-insert and undo-
delete actions for the insert and delete actions done after
setting savepoint p, executed in the reverse order.

All the update actions of an updating transaction are
logged onto a physiological write-ahead log as in ARIES
[14]. Redo-undo log records are written for an insert
action, a delete action, the incrementation of vact in a
begin-update action, and the incrementation of vcur in
a commit-update action, while redo-only log records are
written for an undo-insert action, an undo-delete action,
and the decrement of vact in a finish-rollback action. The
commit-update and finish-rollback actions also write
separate commit log records and force the contents of the
log buffer onto disk. A read-only transaction does not create
any log records; it only stores transient control information
in the active-transactions table when it begins, and removes
that information when it commits.

5. IMPLEMENTATION OF THE ACTIONS
We assume that the physical consistency of the database

during normal processing is maintained by short-duration
latching [14] of pages, so that the server process or thread
that executes a transaction keeps a page p read-latched for
the time a read action is performed on p, and write-latched
for the time an update action is performed on p. We also
assume that the buffer manager applies the standard steal-
and-no-force buffering policy. These assumptions are in ac-
cordance with the ARIES recovery algorithm [14].

In a fully dynamic index structure in which any inserted
data can be physically deleted at any time, latch-coupling
(also called crabbing by Gray and Reuter [5]) is the stan-
dard way to guarantee the validity of traversed search paths
in all circumstances. In a general situation, the validity of
the traversed path can be ascertained by releasing the latch
on the parent page only after the latch on a child page has
been acquired. Latch-coupling is deadlock-free if all latches
are acquired in a certain order, such as first top-down, then
left-to-right. However, in the case of a TMVBT the fact
that inactive data is never deleted or moved, together with
our assumption that a read-only transaction only reads in-
active data, implies that query and range-query actions
of read-only transactions need not do latch-coupling, so that
a parent page may be unlatched before acquiring a latch on
a child page.

Accordingly, an action query(k, v) in a read-only trans-
action can be implemented as follows. First, the root page
for version v is located from root∗ and read-latched. Then
the TMVBT is traversed using read latches until the leaf
page p is found that covers k and v, that is, k ∈ kr(p) and
v ∈ vr(p). At each index page p on the traversed path, the
next page on the path is the child page q of p with k ∈ kr(q)
and v ∈ vr(q). Once the page identifier q of the child page

has been determined, the read latch on the parent page p is
released and the child page q is read-latched.

An action range-query([k1, k2), v) is implemented simi-
larly, except that for each index page p in the search path
we need to traverse all subtrees rooted at child pages q with
[k1, k2) ∩ kr(q) 6= ∅ and v ∈ vr(q). If there are more than
one such child page q, then all but the first are pushed into
a stack, and the traversal proceeds to the subtree rooted at
the first child. When a subtree has been searched, a page
(if any) is popped from the stack and read-latched, and the
search is continued at the subtree rooted at that page.

An action query(k) in an updating transaction is imple-
mented as the action query(k, vact), and an action range-
query([k1, k2)) as the action range-query([k1, k2), vact).
These actions may read active data, but latch-coupling is
still not needed, because the data can move from a page to
another only in a structure modification performed by the
process (or process thread) that is generating the updating
transaction itself.

For more efficiency, the TMVBT may contain direct links
to the root page of version vact so that the queries in updat-
ing transactions do not need to use the root∗ structure to
find it. Similarly, if it is expected that applications read the
committed version most often, the root page of version vcur

can also be tracked separately.
We assume that all TMVBT traversals maintain a saved

path, that is, an array path local to the server process or
thread in question and indexed by the height of pages, so
that path[i].page gives the page identifier, path[i].LSN gives
the Page-LSN, path[i].kr gives the key range, and path[i].vr
gives the version range, of the page at height i on the latest
traversed path.

The saved-path concept can be used to accelerate query
and range-query actions by starting the traversal at the
lowest-level page in the saved path that, according to the
saved information, covers the entire search space. This page
is known to be the correct page to start the tree traver-
sal, because (1) for read-only transactions, the inactive data
is never moved away from the pages; and (2) for updating
transactions, there can be no other updating transaction
that would invalidate the data in the saved path of the cur-
rent updating transaction.

The global variables vcur and vact are maintained in the
permanent database and their reading and writing is pro-
tected by locking. A begin-read-only action acquires a
short-duration read lock on vcur for reading its value, and a
commit-update action acquires a commit-duration write
lock on it for incrementing its value. A begin-update ac-
tion acquires a commit-duration write lock on vact , thus
guaranteeing that at most one updating transaction is ac-
tive at a time. The decrement of vact in a finish-rollback
action is performed under the protection of that lock.

For insert(k, w) and delete(k), the TMVBT is traversed
with read latches as for query(k, vact), except that the tar-
get leaf page p is write-latched. As in query(k) and range-
query([k1, k2)), no latch-coupling is needed. If the target
leaf page p can accommodate the update, so that it is possi-
ble to perform the update on the page without violating the
required balance conditions, then the update is done on p,
a redo-undo log record is generated, its LSN is stamped in
the Page-LSN field of p, and the write latch on p is released.

In the case of insert(k, w), the target leaf page p can
accommodate the update if it has room for inserting the

entry ((k, [vact ,∞)), w). In the case of delete(k), page
p can accommodate the update if replacing the entry
((k, [v,∞)), w), v 6= vact by ((k, [v, vact)), w) or removing
the entry ((k, [vact ,∞)), w) does not decrease the number
of live entries in the page below the required minimum min.

When the target leaf page p cannot accommodate the up-
date, structure modifications are needed. These operations
are explained in Sec. 6. For inserts, the operation split
is called before the insert action can proceed. For deletes,
the page p needs to be consolidated with operation consol-
idate before the entry can be deleted from the page. For
the structure-modification operations, the page p will be left
write-latched on the saved path. After the operations, the
saved path will contain the proper write-latched leaf page
p′ whose key range contains k. As with the earlier situa-
tion, the update is now done on page p′, a redo-undo log
record is generated, the LSN is stamped on p′ and page p′

is unlatched.
As will be explained in the next section, the structure

modifications (page splits or merges) are done in a top-
down, level-by-level manner, logging the structure modifi-
cation done at each level using a single redo-only log record.
Each of these structure modifications involves at maximum
five pages on two adjacent levels. The structure modifica-
tions result in a target leaf page that can accommodate the
insert or delete action in question.

An undo action, undo-insert(r) or undo-delete(r), is
performed as a physical undo if possible and as a logical undo
otherwise [14]. For a physical undo, the page mentioned in
the log record r is write-latched and the Page-LSN field is
examined. If the Page-LSN field still contains the LSN of
r, or if the page contents show that the page is the correct
target for the undo action and the page can accommodate
the undo action, the undo action is performed on the page,
a redo-only log record is generated, its LSN is stamped in
the Page-LSN field of the page, and the page is unlatched.

The target leaf page p can accommodate the undo of an ac-
tion insert(k, w) if the inserted entry ((k, [vact ,∞)), w) can
be removed from p without decreasing the number of live
entries in p below the required minimum min. The target
leaf page p can always accommodate the undo of an action
delete(k) if this action replaced the entry ((k, [v,∞)), w)
by the entry ((k, [v, vact)), w) in p. If the action removed
the leaf-page entry ((k, [vact ,∞)), w) from p, then p can ac-
commodate the undo action if it has room for the entry.

If the page mentioned in the log record r cannot be seen
to be the correct target for the undo action or if the page
cannot accommodate the undo action, a logical undo is per-
formed, starting with a search for the key mentioned in r and
including any structure modifications that may be necessary
to make the target page accommodate the undo action.

The following theorem states that the asymptotic bounds
of the MVBT are maintained for queries:

Theorem 1 Let us denote by mv the number of live data
items in database version v. Assuming that all structure-
modification operations maintain the structural consistency
and balance of the TMVBT and that locating the root page
for any version v takes only constant time, (1) the action
query(k, v) is performed in time O(logmin mv); (2) the ac-
tion query(k) is performed in time O(logmin mv), where v
is the active database version vact ; (3) the action range-
query([k1, k2), v) is performed in time O(logmin mv + r),
where r is the number of data items in version v whose

key belongs to the key range [k1, k2); (4) the action range-
query([k1, k2)) is performed in time O(logmin mv+r), where
v = vact and r is the number of data items in version vact

whose key belongs to [k1, k2). 2

The following theorem follows directly from the definitions
of the query and range-query actions and from the fact
that only one updating transaction can be active at a time:

Theorem 2 Our algorithms produce a snapshot-isolated
[2] serializable schedule for the transactions. 2

6. STRUCTURE MODIFICATIONS
With the user-transaction actions defined, we will now

concentrate on the structure-modification operations split
and consolidate. The general convention in these opera-
tions is that each structure-modification operations trans-
forms a structurally consistent and balanced TMVBT into
another structurally consistent and balanced TMVBT. Each
operation is logged with a single redo-only log record, so that
structure modifications are never undone when transaction
aborts or system fails [7, 8]. The structure-modification op-
erations need to be performed top-down, starting from the
highest page on the search path that requires splitting or
consolidation.

The actual implementation of the operations traverses the
search path bottom-up in order to determine which kind of
a structure modification is needed at each level, yet without
performing any modification. When a parent page which
does not need any modification is encountered, the search
path is traversed top-down, and the structure-modification
operations are performed level-by-level, logging each oper-
ation with a single redo-only log record. The search path
state is guaranteed to remain valid throughout the opera-
tions because only one updating transaction can be active
at a time. Thus, the information about the traversed search
path stored in the saved path can be trusted. For clarity,
the algorithms presented in this section only describe the
structure-modification operations applied at a single level.

Before explaining the two structure-modification opera-
tions, split and consolidate, we will first define the page-
killing operation. Page killing is not a separate structure-
modification operation, but it is used by both split and con-
solidate. This operation takes an inactive page p, marks it
as killed, and creates a new active page p′ that holds the
live contents of p. An overview of this operation is shown in
Algorithm 1. The page p and its parent q (located from the
saved path) both need to be write-latched.

Algorithm 1 Kill page p, parent page q

p′ ← create and write-latch a new page
copy all live entries of p to p′

end the version range of the router to p in q
insert router to p′ in q

The operation begins by allocating the new page p′, write-
latching it and formatting it as a TMVBT page. All the live
entries of page p are now either copied or moved to page p′

in such a way that all active entries are physically moved
to p′ to maintain invariant (3), and all inactive live entries
are copied to p′. The version ranges of the copied entries
are split at version vact , so that a version range [v,∞) is
changed to [v, vact) in p and to [vact ,∞) in p′. Thus, the
logical state of the database at all versions prior to vact is

maintained in page p, but the page p is no longer part of the
active version. The router to page p in the parent page q
must be updated by settings its end version to vact . Also,
the router for the new page is inserted into the parent. After
this, the old page p is replaced by the active page p′ in the
saved path. All pages modified by this operation are kept
write-latched, as the acquired page latches can be released
only after the relevant log record has been written.

The page-killing operation maintains invariant (2), as the
newly created active page p′ contains only entries of ver-
sion vact (at least min entries), and the dead page p no longer
contains any entries of the version vact . The entry counts of
other versions in page p are not affected by the operation.
Invariant (3) is also maintained, as the active entries are
physically moved from page p to the new page p′.

The split operation is a structure-modification operation
that splits a page that has become full. The operation is
similar to the MVBT version-split operation, with the ex-
ception that active pages are directly key-split. This op-
eration is triggered by an insert action when a data page
has become full, and also to split full index pages along the
search path. At the beginning, the page p to be split is re-
trieved from the saved path along with its parent page q, and
both pages are write-latched for modification. As explained
in the beginning of this section, we expect that parent pages
in the saved path have already been split so that the parent
page of p can accommodate the routers to the new pages
created by the split operation. An overview of the actual
operation is simple: if page p is active, it will be key-split,
and if it is inactive, it will be version-split. Key-splitting
and version-splitting will be defined in more detail below.
The split operation is described generally in Algorithm 2.
Note that the bottom-up checking phase needs to do the
same checks that are described in Algorithm 2 to determine
which kind of a split needs to be done. When performing
the actual structure modification, the same checks must be
performed again (as described here), or results saved during
the checking phase can be used.

Key-splitting an active page is similar to a page-split oper-
ation in a standard B+-tree. It is accomplished by creating
a new page p′, and redistributing the entries of page p be-
tween p and p′. Note that all the entries of page p must
be alive and active because p is active. The new page p′ is
thus allocated, write-latched and formatted. After that, the
upper half of the keys in page p are moved to page p′, and
the router to page p in the parent page q is adjusted. Also,
a router to the new page p′ is now inserted to the parent.

An exception to the key-split algorithm is the situation
where page p has no parent page (saved path contains only
the page p). This happens when page p is a root page. In
this situation a new parent page r is allocated, write-latched
and formatted; and routers to pages p and p′ are inserted
to it. The new root is attached to the TMVBT by inserting
the page identifier of r to root∗ with version vact . This may
replace an existing root identifier, if the TMVBT already
contains a root created by the same updating transaction.
The rest of the key-split operation is otherwise similar to
the normal situation.

The version-split operation begins by killing page p with
the page-killing operation defined earlier. The new active
page is denoted by p′. At this point, page p′ may contain
too few or too many entries to satisfy the strong version
conditions. If the entry count of p′ is less than mins, the

Algorithm 2 Split page p, parent page q

if p is active then // Figure 6(a), key split
p′ ← create and write-latch a new page
redistribute entries of p between p and p′

insert router to p′ in q
adjust router to p in q

else // Figures 6(b)–6(g), version split
p′ ← kill page p
insert router to p′ in q
if mp

vact
> maxs then // Figure 6(c)

p′′ ← create and write-latch a new page
redistribute entries of p′ between p′ and p′′

insert router to p′′ in q
adjust router to p′ in q

else if mp
vact

< mins then // Figures 6(d)–6(g)
s ← find a live sibling page of p′ from q
write-latch s
if s is active then // Figures 6(f),6(g)

p′′ ← s
else // Figures 6(d),6(e)

p′′ ← kill page s
end if
if mp

vact
+ ms

vact
> maxs then // Figures 6(e),6(g)

redistribute entries of p′ and p′′

adjust router to p′ in q
adjust router to p′′ in q

else // Figures 6(d),6(f)
move all entries of p′′ to p′

adjust router to p′ in q
remove router to p′′ from q
deallocate p′′

end if
else // Figure 6(b)

// No further action required
end if

end if
log the operation using a redo-only log record
release page latches

page will be merged with a sibling page by consolidating
it in the same way as the consolidate operation does. If
the entry count of p′ is more than maxs, the page will be
key-split in the same way as active pages are split.

The entire split operation consisting of either a key split
or a version split (possibly followed by a key split or consol-
idation) is logged with a single redo-only log record contain-
ing the page identifiers of all pages involved, that is, pages
p, p′, p′′, s and q. The log record must also contain informa-
tion of all the entries moved or copied between pages. As
usual, all the pages are kept latched until the log record has
been generated and its LSN stamped in the Page-LSN fields
of the pages. The split operation is finished by replacing the
old page p in the saved path with the proper active page, and
by unlatching all other pages related to the split operation.

All possible split scenarios for inactive pages are shown
in Figure 6. In the figure, the horizontal axis represents
version ranges, and the vertical axis shows key ranges. In the
presented scenarios, page p is split. Page s is the sibling page
that is located from the parent of p found in the saved path.
Pages p′ and p′′ are new pages created by the operation.
As can be seen from the figures, all the scenarios preserve
the initial key-version extents of p and s. That is, the new
pages cover exactly the same region in key-version space

as the old pages did. Therefore the version-split operation
cannot cause overlap or create gaps in the key-version space
at any level of the TMVBT structure.

. . . p → . . .
p
p′

(a) p active, mp
vact

= B

p → p p′

(b) mins ≤ mp
vact

≤ maxs

p → p
p′

p′′

(c) mp
vact

> maxs

p

s
→ p

p′

s

(d) s inactive,
mp

vact
+ ms

vact
≤ maxs

p

s
→ p

p′

p′′
s

(e) s inactive,
mp

vact
+ ms

vact
> maxs

p

. . . s
→ p

p′

. . .

(f) s active,
mp

vact
+ ms

vact
≤ maxs

p

. . . s
→ p

p′

p′′
. . .

(g) s active,
mp

vact
+ ms

vact
> maxs

Figure 6: Page-split scenarios for page p. The hori-
zontal axis represents version ranges, and the vertical axis
key ranges. Case (a) represents an ordinary key split, (b) a
version split, (c) a version split followed by a key split, (d) a
version split followed by a merge with an inactive sibling,
(e) a version split followed by a redistribution of live entries
with an inactive sibling, (f) a version split followed by a
merge with an active sibling, and (g) a version split followed
by a redistribution of live entries with an active sibling.

We will now consider invariant (2) when splitting inactive
pages. After p has been killed, the resulting page p′ con-
tains e = mp

vact
entries, where e ∈ [min, B]. This is because

split is only called when the page has become full, and by
invariant (2) it must contain at least min live entries. If
e < mins, the page will be consolidated with another page
to avoid thrashing. If e > maxs, the page will be key-split
into two pages (of which both will have more than mins en-
tries). When splitting active pages, the full active page can
always be split into two active pages with B/2 > mins en-
tries. Invariant (3) is also maintained, because page killing
maintains the invariant, as does moving active entries be-
tween two active pages.

The consolidate operation is a structure-modification
operation that merges a page with a sibling page before
the page live-entry count falls below acceptable limits. This
operation is triggered by the delete action, if too many en-
tries have been deleted from a page (weak version condition).
This operation is also used to consolidate index pages in the
search path. An overview of the operation is shown in Algo-
rithm 3. The operation begins by retrieving the page to be
consolidated from the saved path and by write-latching it.
The parent page needs to be modified, so it is also retrieved
from the path, and write-latched for modification. As with
the split operation, it is assumed that the parent can accom-
modate the insertions or deletions possibly triggered by this
operations (insertion of up to two new routers; or deletion
of a single router). Again, the bottom-up checking phase

needs to do the same checks that are shown in Algorithm 3,
and these results can be saved.

Algorithm 3 Consolidate page p, parent page q

s ← find live adjacent sibling of p
write-latch s
if p is active then // Figures 7(a)–7(d)

p′ ← p
else // Figures 7(e)–7(h)

p′ ← kill page p
end if
if s is active then // Figures 7(a),7(b),7(e),7(f)

p′′ ← s
else // Figures 7(c),7(d),7(g),7(h)

p′′ ← kill page s
end if
if mp

vact
+ ms

vact
≤ maxs then // 7(a),7(c),7(e),7(g)

move all entries of p′′ to p′

remove router to p′′ from q
adjust router to p′ in q
deallocate p′′

else // Figures 7(b),7(d),7(f),7(h)
redistribute entries between p′ and p′′

adjust router to p′ in q
adjust router to p′′ in q

end if
log the operation using a redo-only log record
release page latches

The consolidation begins by finding a live adjacent sibling
page s from the parent page q, and write-latching it. Such
a page is guaranteed to be found, because by invariant (2),
the parent page must contain at least two live entries, and
these must be adjacent. If either page p or the sibling page s
is inactive, it will be killed with the page-killing operation
defined earlier. We denote the active pages with p′ (from
page p) and p′′ (from page s). The consolidation operation
can now merge the pages p′ and p′′.

The merging is similar to the standard B+-tree merge op-
eration. If the combined entry count of pages p′ and p′′

(equivalently, live-entry count of pages p and s) is larger
than maxs, the entries will be redistributed between the two
pages. If the entry count is below or equal to maxs, the
entries will be moved to page p′, and page p′′ will be deallo-
cated by removing the router to it from the parent and deal-
locating the page from the corresponding space-map page.
The router to page p′ (and to page p′′ in the former case)
in the parent q need to be updated to match the new key
ranges. This cannot result in invalid links to pages p′ and p′′

from other parents, because the pages are active, and there-
fore have only one parent by invariant (3).

An exception to the normal operation of consolidate is
when the current index root live-entry count falls to one.
In this case, the root of the active version can be replaced
in the TMVBT with the single remaining child by inserting
the child page identifier to root∗ with version vact . This
may replace an already existing root, if root∗ contains a
root created by the same transaction earlier on. If the old
root page is an active page, it may be deallocated at this
point.

The entire consolidation operation, including the possible
root page update operation, is logged with a single redo-
only log record containing the page identifiers of all related

pages—this means pages p, s, p′, p′′ and q. The log record
must also contain information of all the moved entries. The
saved path must now be returned to a proper state, so that
the proper active page p′ or p′′ is placed in the saved path
to replace the consolidated page. The operation finishes by
releasing the write latches on the pages.

The possible consolidation scenarios for page p are shown
in Figure 7. In the figure, page p is consolidated with a live
sibling page s. For consistency with Figure 6, the resulting
active pages are denoted p′ and p′′, even though p′ = p when
the page p is active.

. . .
p
s → . . . p′

(a) p active, s active,
mp

vact
+ ms

vact
≤ maxs

. . .
p
s → . . .

p′

p′′

(b) p active, s active,
mp

vact
+ ms

vact
> maxs

. . . p

s
→

. . .
p′

s

(c) p active, s inactive,
mp

vact
+ ms

vact
≤ maxs

. . . p

s
→

. . .
p′

s
p′′

(d) p active, s inactive,
mp

vact
+ ms

vact
> maxs

p

. . .
s →

p
p′

. . .

(e) p inactive, s active,
mp

vact
+ ms

vact
≤ maxs

p

. . .
s →

p
p′

. . .
p′′

(f) p inactive, s active,
mp

vact
+ ms

vact
> maxs

p

s
→

p
p′

s

(g) p inactive, s inactive,
mp

vact
+ ms

vact
≤ maxs

p

s
→

p
p′

s
p′′

(h) p inactive, s inactive,
mp

vact
+ ms

vact
> maxs

Figure 7: Page consolidations scenarios for page p.

Let us now prove that invariant (2) is maintained through-
out this operation, and that the new pages contain between
mins and maxs entries to avoid page thrashing. The possible
page-killing operations maintain the invariant regarding the
historical pages, as explained earlier. Page p must have ex-
actly min live entries, while s can have between min and B
live entries. This range of entries {e | 2×min ≤ e ≤ min+B}
is in the range that merging can handle. In the minimum
case, 2 × min ≥ mins entries are moved to page p′, and
page p′′ is deleted. In the maximum case, min+B en-
tries are distributed between p′ and p′′, resulting in more
than mins and less than maxs entries per page. The for-
mer holds trivially (as we are distributing more than maxs

entries between two pages), and the latter holds because
min+B = (mins−s) + (maxs +s) = mins +maxs.

Invariant (3) is also maintained, as both killing an inac-
tive page and merging two active pages physically move the
active entries. Thus, the parent count of active pages is not
affected.

Lemma 3 Any structure modification needed in the im-
plementation of insert, delete, undo-insert and undo-
delete actions keeps at most five TMVBT pages latched
simultaneously and transforms a structurally consistent and
balanced TMVBT into a structurally consistent and bal-

anced one. For any of the actions, at most h + 1 structure
modifications are needed, where h is the height of the tree
in the active database version vact . 2

The following theorem states that the update actions also
maintain the asymptotic bounds of the MVBT:

Theorem 4 Assuming that locating the root page for
any database version v takes only constant time, each of the
actions insert, delete, undo-insert, and undo-delete is
performed in time O(logmin mv), where mv is the number of
data items in the active database version v = vact . 2

In restart recovery from a system crash, an ARIES-based
recovery algorithm [14, 7, 8] is used.

Theorem 5 In the event of a system crash, the redo pass
of restart recovery produces a structurally consistent and
balanced TMVBT on which the undo actions by a backward-
rolling updating transaction (if any) can be performed logi-
cally if a physical undo is impossible. 2

7. RELATED WORK
The idea of storing historical versions in the database is

not new. Easton’s write-once balanced tree (WOBT, [3])
stores multiple versions of data on indelible storage; how-
ever, the structure only keeps track of the current version,
and the mechanism has been designed based on the fact
that written contents cannot be deleted from the write-once
media. Moreover, when a page is split, the current entries
are moved to a new page and the old entries remain in the
old page. In WOBT algorithms, it is not described how to
access the historical versions of the data.

Lomet’s and Salzberg’s time-split B+-tree (TSBT, [13])
stores multiple versions of data. The TSBT allows access
to historical versions, but it does not do page consolidation
(merging). The current pages can only be split into pages
with smaller key ranges, they are never merged with adja-
cent pages as in the MVBT [1]. This could be a problem for
applications that actively delete old data from the database
and use increasing identifiers as keys. In this situation pages
near the high end of the key range need to be continuously
split to contain new entries with high keys, while pages at the
low end of the key range will contain practically no entries
of the current version. As the amount of pages belonging to
the current version increases, so does the structure height,
which leads to longer search paths. Similarly, range queries
will need to traverse more pages as leaf pages contain few
entries of the current version (or none at all).

Another method for accessing temporal data is hashing.
Kollios and Tsotras describe a hashing method for access-
ing temporal data with non-branching history [10]. Hashing
is very efficient for an exact-match query, with an access
time of O(1) in ideal situations. However, hashing cannot
support efficient key-range queries. In the MVBT, the time
complexities of all the actions are logarithmic.

For a comprehensive presentation and comparison of dif-
ferent multiversion access methods, the reader is referred to
Salzberg and Tsotras [18].

Lomet et al. have chosen the time-split B+-tree (TSBT)
as the basis when implementing multiversion support to Im-
mortal DB, which is built into the commercial Microsoft
SQL Server [11]. When performing a version-based split
(time-split) in the TSBT, a new page is created for the his-
torical contents of the old page. Thus, pages that contain
old data can be moved to a slower tertiary storage after the
pages become historical. This is indeed a problem in the

MVBT algorithms; the old page must be left in place, be-
cause there can be an unknown number of references to it
from historical parent pages (unless all the parents of a given
child page are somehow tracked). A simple solution would
be to maintain a separate mapping from page identifiers to
actual locations in the storage media. In this way, the old
pages could be moved to a tertiary storage when they are
killed.

Jouini and Jomier [9] recently published a paper com-
paring three different approaches for indexing multiversion
data with branched evolution. However, none of the struc-
tures presented can guarantee the logarithmic query-time
and space bounds of the MVBT.

Salzberg et al. have also published an interesting frame-
work for accessing multiversion data [17]. Their algorithms,
however, work with branching histories, while the MVBT
only works with a linear history. That is, in their frame-
work, new versions can be created from any existing version,
thus creating version branches. The version numbers are in-
creasing integer numbers, and the branching information is
stored in a separate version tree. This adds complexity to
the algorithms, and also makes it non-trivial to determine
whether two version numbers are on the same branch. Also,
because of the simpler version scheme, the MVBT does not
need to store null records (which are used to mark item dele-
tions) and therefore does not have ghost pages (which are
pages that only contain null records). Our extended MVBT
algorithms allow key merges without version-splitting for ac-
tive pages. For these reasons we believe that the extended
MVBT algorithms are more efficient for database systems
with linear histories.

As explained in Sec. 6, each structure modification on the
TMVBT only involves pages on two adjacent levels of the
structure; each such modification turns a structurally con-
sistent and balanced TMVBT into a structurally consistent
and balanced one and is logged using a single redo-only log
record. This technique has been designed for B+-tree-like
structures by Jaluta et al. [7, 8].

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have extended the original multiversion

B+-tree (MVBT) algorithms by Becker et al. [1] to support
multiple updates within a single updating transaction. Our
extended algorithms maintain the same asymptotic bounds
as the original MVBT algorithms (Theorems 1 and 4).
None of the user actions or structure-modification opera-
tions cause pages to consolidate or split earlier than when
using the previous algorithms. Also, all new pages have the
same minimum and maximum entry counts as the previous
algorithms for each operation that creates new pages—thus,
the same number of operations is required before new pages
need to be split or consolidated. Furthermore, the new
operations modify the same number of pages than the
original MVBT algorithms. At most four (plus one) pages
need to be modified per level in a single operation; this is
the case for example when two inactive sibling pages are
version-split and their live entries are distributed between
two new pages. A maximum number of five pages must
therefore be held write-latched at the same time, as the
parent page must also be modified.

We have also designed a simple concurrency control and
recovery scheme that supports a single updating transaction
and multiple concurrent read-only transactions. Because the

inactive data read by read-only transactions does not move
between pages, the applied latching scheme allows for high
concurrency for the read-only transactions. The recovery
algorithms are in line with the de facto standard ARIES al-
gorithms and produce a structurally consistent and balanced
TMVBT structure after a system crash (Theorem 5).

We believe that it is not possible to directly extend our
TMVBT algorithms to the fully concurrent setting in which
multiple updating transactions operate concurrently on the
TMVBT. The first problem is that transactions need to have
a version number assigned when they first perform updates
on the TMVBT. At that point, however, the commit order
of the transactions may not be known. If the modifications
are not performed in commit order, the database will become
inconsistent. On the other hand, forcing transactions to
commit in their starting order or in the order in which they
perform their first update action could delay indefinitely the
commit of transactions. It is also unclear what would be the
definition of active pages and entries with multiple updating
transactions. Also, backward-rolling aborted transactions
that delete entries they have inserted in their forward-rolling
phase can cause the structure to have too few live entries at
some pages. Thus, it is only possible to insert entries of one
version at a time to the TMVBT.

The problems encountered suggest a database organiza-
tion in which the TMVBT is used as a storage for committed
data, while a (smaller) B+-tree is used to store the updates
of active updating transactions. A system-generated main-
tenance transaction can then be run periodically to move
the updates of the committed transactions from the B+-tree
to the TMVBT one version at a time in the commit order
of the transactions. This organization would also allow the
version numbers used in the TMVBT to follow the commit
order of transactions even when the commit order is differ-
ent from the starting order (cf. Immortal DB [12]). Similar
techniques involving a smaller, temporary index have been
published before, called differential indices by Pollari-Malmi
et al. [16] and side files by Mohan and Narang [15]. Design-
ing this database organization is the topic of our future work
with the multiversion B+-tree.

9. ACKNOWLEDGMENTS
This work has been funded by the Academy of Finland.

10. COPYRIGHT
c©ACM, 2009. This is the author’s version of the work.

It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was pub-
lished in Proceedings of the 12th International Conference
on Extending Database Technology, http://doi.acm.org/

10.1145/1516360.1516482.

11. REFERENCES
[1] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and

P. Widmayer. An asymptotically optimal multiversion
B-tree. The VLDB Journal—The International
Journal on Very Large Data Bases, 5(4):264–275,
1996.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In Proceedings of the ACM SIGMOD

International Conference on Management of Data,
pages 1–10. ACM New York, NY, USA, 1995.

[3] M. Easton. Key-sequence data sets on indelible
storage. IBM Journal of Research and Development,
30(3):230–241, 1986.

[4] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM Transactions on Database Systems,
30(2):492–528, 2005.

[5] J. Gray and A. Reuter. Transaction processing:
concepts and techniques. Morgan Kaufmann, 1993.

[6] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 47–57. ACM Press New York, NY, USA, 1984.

[7] I. Jaluta, S. Sippu, and E. Soisalon-Soininen.
Concurrency control and recovery for balanced B-link
trees. The VLDB Journal—The International Journal
on Very Large Data Bases, 14(2):257–277, 2005.

[8] I. Jaluta, S. Sippu, and E. Soisalon-Soininen. B-tree
concurrency control and recovery in page-server
database systems. ACM Transactions on Database
Systems, 31(1):82–132, Mar 2006.

[9] K. Jouini and G. Jomier. Indexing multiversion
databases. In Proceedings of the 16th ACM Conference
on Information and Knowledge Management, pages
915–918. ACM New York, NY, USA, 2007.

[10] G. Kollios and V. Tsotras. Hashing methods for
temporal data. IEEE Transactions on Knowledge and
Data Engineering, 14(4):902–919, 2002.

[11] D. Lomet, R. Barga, M. Mokbel, G. Shegalov,
R. Wang, and Y. Zhu. Immortal DB: transaction time
support for SQL server. In Proceedings of the 2005
ACM SIGMOD International Conference on
Management of Data, pages 939–941, 2005.

[12] D. Lomet, R. Barga, M. Mokbel, G. Shegalov,
R. Wang, and Y. Zhu. Transaction time support inside
a database engine. In Proceedings of the 22nd
International Conference on Data Engineering, pages
35–46, 2006.

[13] D. Lomet and B. Salzberg. Access methods for
multiversion data. In Proceedings of the 1989 ACM
SIGMOD International Conference on Management of
Data, pages 315–324, 1989.

[14] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM
Transactions on Database Systems, 17(1):94–162,
1992.

[15] C. Mohan and I. Narang. Algorithms for creating
indexes for very large tables without quiescing
updates. In Proceedings of the 1992 ACM SIGMOD
International Conference on Management of Data,
pages 361–370. ACM Press New York, NY, USA, 1992.

[16] K. Pollari-Malmi, J. Ruuth, and E. Soisalon-Soininen.
Concurrency control for B-trees with differential
indices. In Proceedings of the International Database
Engineering and Applications Symposium, pages
287–296, 2000.

[17] B. Salzberg, L. Jiang, D. Lomet, M. Barrena, J. Shan,
and E. Kanoulas. A framework for access methods for

http://doi.acm.org/10.1145/1516360.1516482
http://doi.acm.org/10.1145/1516360.1516482

versioned data. In Proceedings of the 9th International
Conference on Extending Database Technology, pages
730–747, 2004.

[18] B. Salzberg and V. Tsotras. Comparison of access
methods for time-evolving data. ACM Computing
Surveys, 31(2):158–221, 1999.

[19] G. Özsoyoǧlu and R. Snodgrass. Temporal and
real-time databases: a survey. IEEE Transactions on
Knowledge and Data Engineering, 7(4):513–532, 1995.

	1 Introduction
	2 Multiversion B-Tree
	3 Transactional MVBT
	4 Actions of Transactions
	5 Implementation of the Actions
	6 Structure Modifications
	7 Related work
	8 Conclusions and future work
	9 Acknowledgments
	10 Copyright
	11 References

