
Concurrent Updating Transactions on Versioned Data

Tuukka Haapasalo
Helsinki University of

Technology
Espoo, Finland

thaapasa@cs.hut.fi

Ibrahim Jaluta
Helsinki University of

Technology
Espoo, Finland

ijaluta@cs.hut.fi
Seppo Sippu

University of Helsinki
Helsinki, Finland

sippu@cs.helsinki.fi

Eljas Soisalon-Soininen
Helsinki University of

Technology
Espoo, Finland
ess@cs.hut.fi

ABSTRACT
Modern database applications increasingly often require ac-
cess to historical versions of the database. Storing such mul-
tiversion data in a single-version B+-tree database index is
inefficient, especially for key-range queries. In this article,
we present an index structure called the concurrent multiver-
sion B+-tree (CMVBT) for efficiently storing and querying
multiversion data.

The CMVBT structure uses an asymptotically optimal
transactional multiversion B+-tree (TMVBT) index as the
main data storage, and a separate B+-tree index called the
versioned B+-tree (VBT) to hold the updates of active trans-
actions. The updates of committed transactions are moved,
one transaction at a time, from the VBT into the TMVBT.
This organization of two separate index structures allows
us to maintain the asymptotic optimality guarantees of the
TMVBT even in the presence of concurrent updating trans-
actions.

We provide concurrent algorithms for updating and read-
ing the CMVBT structure. Our CMVBT algorithms can
be used with the standard snapshot isolation concurrency-
control and ARIES-based recovery algorithms to allow mul-
tiple read-only and updating transactions to operate con-
currently on the structure. Transaction rollback is also sup-
ported for all updating transactions, either entirely or up to
a preset savepoint.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design—access
methods,recovery and restart ; H.2.4 [Database Manage-
ment]: Systems—concurrency,transaction processing

General Terms
Algorithms, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS 2009, September 16-18, Cetraro, Calabria [Italy]
Editor: Bipin C. DESAI
Copyright @2009 ACM 978-1-60558-402-7/09/09 $5.00.

Keywords
Database indexing methods, temporal databases, concur-
rency control, recovery

1. INTRODUCTION
Modern database applications often require access to his-

torical states of the database, in addition to the current
state. Historical data is most efficiently accessed for this pur-
pose with multiversion database indices. For single-version
databases, the B-tree [2, 3, 6] is the de facto choice for in-
dexing data, with the B+-tree being the most often used
variant. The B+-tree is an asymptotically optimal index
structure for single version data, meaning that the index
search operations will be optimal after any sequence of user
transactions.

For historical databases, there are a few promising index
structures, but none of them is entirely without limitations.
The multiversion B+-tree (MVBT) by Becker et al. [4] is an
asymptotically optimal multiversion access structure. The
optimality of the MVBT structure guarantees that the per-
formance of the index will not deteriorate under any se-
quence of user transactions, including key deletions. This is
a requirement for large key-range queries to work efficiently.
However, the MVBT provides only action-wise versioning,
where each new action performed creates a new version of
the index. Furthermore, undo actions are not supported,
and no optimality-preserving updating algorithms exist for
the the MVBT that would allow concurrent updates by mul-
tiple updating transactions. Thus, the MVBT index cannot
be efficiently used as a transactional multiversion database.
The time-split B+-tree (TSBT) by Lomet and Salzberg [17,
18] is the basis of Microsoft SQL Server’s multiversion engine
Immortal DB [15, 16]. However, the TSBT has no asymp-
totically logarithmic access time guarantees for tree traver-
sals in different versions. The performance of the TSBT—
especially of the key-range queries—may thus deteriorate
with key deletions.

Our goal is to extend the multiversion B+-tree of Becker et
al. [4] to an asymptotically optimal multiversion index struc-
ture with concurrent updating algorithms that can be used
with standard concurrency-control and recovery algorithms
to allow multiple updating and read-only transactions to op-
erate concurrently on the structure. As an initial step, we

have extended the MVBT to support multi-action transac-
tions and designed concurrency-control algorithms that al-
low a single updating transaction to operate concurrently
with multiple read-only transactions [8, 9]. Our extension is
called the transactional multiversion B+-tree, or TMVBT.

In this article, we describe how to further extend the
TMVBT structure to support multiple concurrent updating
transactions. As described in our TMVBT article [8], the
TMVBT structure cannot directly support multiple updat-
ing transactions without compromising its optimality guar-
antees. We have thus designed a two-level index structure
composed of a permanent TMVBT index used as the main
storage of committed versioned data and a temporary B+-
tree index called the versioned B+-tree (VBT) used to store
the versions created by active or recently committed trans-
actions. A system maintenance transaction is run periodi-
cally to move the updates of committed transactions from
the temporary VBT index into the TMVBT. The VBT is
expected to remain small, and thus it will reside entirely in
main memory during normal transaction processing. How-
ever, should a long-running transaction require considerable
amounts of space, this organization allows us to flush parts
of the VBT to disk.

We begin in Sec. 2 by describing the general organization
of our new database index structure. In Sec. 3, we explain
the temporary versioned B+-tree structure, which is a B+-
tree index used for storing multiple versions of keys. After
that, in Sec. 4, we briefly review our transactional extension
to the multiversion B+-tree. Then, in Sec. 5, we explain
the general conventions used in the concurrency-control and
recovery algorithms. Sec. 6 describes the system mainte-
nance transaction that is used to move the updates from the
VBT into the TMVBT. In Sec. 7, we explain in more detail
how user transactions read and update the index structures.
Then, in Sec. 8, we describe how our index structure differs
from other related index structures. Finally, in Sec. 9, we
present our conclusions on the CMVBT index and outline
our plans on how to test the design in our future work.

2. CONCURRENT MVBT
The concurrent multiversion B+-tree (CMVBT) is com-

posed of two parts: a versioned B+-tree (VBT) index that
is used as a temporary storage of updates by active transac-
tions, and a transactional multiversion B+-tree (TMVBT)
index that is used as a final, stable storage of multiversion
data. The VBT is described in detail in Sec. 3, and the
TMVBT is reviewed in Sec. 4. For user transactions, the
TMVBT is a read-only structure. The TMVBT is only up-
dated by a system maintenance transaction, which is peri-
odically run to move the updates of committed transactions
from the temporary VBT index into the TMVBT. This
setup is illustrated in Figure 1. A similar approach, called
differential indices, is employed by Pollari-Malmi et al. [23]
to group updates falling into the same leaf page and to sim-
plify the recovery algorithms. Mohan and Narang also use
temporary indices called side files [21] to allow online index
construction while the data is being queried and updated.
Differential indices were first introduced by Lang et al. [13].

An example of a CMVBT database setup is given in Fig-
ure 2. The example shows a database with five committed
transactions (versions 1–5), and two active, uncommitted
transactions (with temporary identifiers 102 and 104). The
variable vcommit denotes the commit-time version number of

Figure 1: The CMVBT structure organization. The
user issues queries both to the VBT and to the TMVBT, but
updates are performed only on the VBT. A system mainte-
nance transaction is run periodically to apply the updates
from the VBT into the TMVBT.

the latest committed transaction. The temporary identifiers
103 and 101 correspond to committed versions 4 and 5, re-
spectively. The concepts present in the image are explained
in the following paragraphs.

Figure 2: A logical example of a CMVBT. The
database contains five committed versions, versions 1–5.
The TMVBT index contains all the updates of committed
versions 1–3, and the updates of committed versions 4–5 are
still located in the VBT index (with transient transaction
identifiers 103 and 101).

Following Lomet et al. [16], we assign a transient transac-
tion identifier start-time(T) for each new transaction T . The
updates of the transaction T will be stored to the VBT in-
dex with this transient identifier used as the VBT entry ver-
sion number (identifiers 101–104 in the example situation of
Figure 2). The version numbers of committed transactions,
however, must be based on their committing order, not their
starting order. Therefore, when an active transaction T
commits, we assign it a permanent commit-time-based ver-
sion number, denoted commit-time(T) (versions 1–5 in the
example image). This version number defines the ordering of
committed transactions. When the updates of a committed
transaction T are moved to the TMVBT, the commit-time
version number is known, and will be used in the TMVBT
index. Thus, the TMVBT stores commit-time version num-
bers exclusively, and the VBT index stores only transient
transaction identifiers. The transient transaction identifiers
are internal to the database system, and not visible to the
users. Thus, the users only use the commit-time version
numbers when issuing history queries to the database. Both
of these version numbers can be based either on the system

time, or on an increasing counter value, as long as they are
unique and ordered consecutively. In the following discus-
sion, we assume that the version numbers are based on an
increasing counter value.

Since the transient transaction identifiers and the actual,
commit-time version numbers of the transactions may dif-
fer, a mapping from commit-time version numbers to the
transient identifiers is maintained in an in-memory hash-
table called the commit-to-start table, or CTS table. In the
example image of Figure 2, the updates of committed trans-
actions with commit-time version numbers 4 and 5 are still
located in the VBT with transient transaction identifiers 103
and 101. A mapping tc → ts, for a committed transaction T
with commit-time(T) = tc and start-time(T) = ts, is deleted
from the CTS table once the maintenance transaction has
moved all updates of transaction T from the VBT index into
the TMVBT and committed. The CTS table does not need
to be backed to disk. If the system fails, the CTS table can
be reconstructed based on the log file contents during the
analysis pass of the ARIES restart recovery [20].

The CMVBT structure maintains a variable vstable that
tells which commit-time versions are already reflected in the
TMVBT index. In other words, for each version v ≤ vstable,
all the updates of a transaction T with commit-time(T) = v
have been moved to the TMVBT. These versions are called
stable versions. This is stated by the following invariant:

∀v : v ≤ vstable ⇒ updates-of(v) ∈ TMVBT
∀v : v > vstable ⇒ updates-of(v) ∈ VBT

(1)

The updates of all committed transactions with commit-
time version numbers larger than vstable are still located in
the VBT. These versions are called transient versions. A
committed transaction can thus be either transient or stable.
In the example image of Figure 1, the commit-time versions
1–3 are stable, and the commit-time versions 4–5 are still
transient.

When the maintenance transaction is running, some or
all of the updates of a single version, named the move ver-
sion vmove, can be located in both of the structures. The
second invariant, namely

vmove = vstable ∨ vmove = vstable + 1, (2)

states that the move version is either the committed version
(in which case the maintenance transaction is not running);
or it is one higher than the committed version. When the
maintenance transaction is running, the user transactions
still use the committed version counter vstable to direct the
search for the correct version of the data items. In the exam-
ple image of Figure 2, the maintenance transaction could be
moving updates of transaction T with commit-time(T) = 4
from the VBT to the TMVBT.

When multiple active transactions update a single key, all
the different values of the same key are stored in the VBT,
ordered by the start timestamps of the transactions that
created them. More formally, when a transaction T with
start-time(T) = v updates an entry with key k by inserting
value w (or by deleting the key, in which case w = ⊥, a spe-
cial marker used to mark deletion), it will either (1) insert a
new entry (k, v, w) into the VBT if no entry (k, v, w′) exists;
or (2) replace the existing entry (k, v, w′) by (k, v, w). When
updating transactions commit, the updated values are left
in the VBT until the maintenance transaction moves the
updates to the TMVBT.

Because the ordering of the committed transactions may
differ from the ordering of the transient identifiers of the
transactions, the entry values in the VBT might not be in
the correct order. Therefore, reading transactions that wish
to read a version v > vstable need to find the transient identi-
fiers of the transactions with commit-time version numbers
vi : vstable < vi ≤ v, and search the VBT for all these
versions, so that the most recent update is found. In the
example situation of Figure 2, a user querying for keys that
are present in a commit-time version 5 needs to find all keys
in the VBT stored with transient transaction identifiers 103
and 101 (corresponding to commit-time versions 4 and 5).
This is relevant for situations when the transaction with
commit-time version 4 has inserted a key that has not been
modified by the transaction with commit-time version 5 (and
is thus still present in the commit-time version 5).

More formally, we define tcommits(v) to be the set of tran-
sient committed versions: tcommits(v) = {vc : vstable < vc ≤
v}. In the example of Figure 2, tcommits(5) = {4, 5}. Fur-
thermore, we define the set tstarts(v) to contain the transient
identifiers associated with the commit versions: tstarts(v) =
{vs : vc ∈ tcommits(v) ∧ vs = CTS[vc]}. In the example,
tstarts(5) = {103, 101}. Now, when looking for the most
recent update of key k, the VBT must be searched look-
ing for the updates of any version vs ∈ tstarts(v). After all
these updates for any given key have been found, they must
be ordered according to the ordering of the corresponding
commit-time version numbers in tcommits(v). After this, the
most recent update is known to be the last update in the or-
dered list. If no updates on the key k are found in the VBT,
the most recent update can be found from the TMVBT.

This is actually not an MVBT-specific issue, but is also
present in other multiversion database index structures that
allow multiple concurrent updating transactions to commit
in an order that is not the same as their corresponding start-
ing order. Lomet et al. [16] have solved this problem by
using a technique called lazy timestamping, in which they
change the version numbers of entries of a committed trans-
action when the entries are first accessed after the transac-
tion has committed. This technique also requires a lookup
table (called persistent timestamp table) for converting tem-
porary version numbers to commit-time version numbers. In
our technique the version numbers of entries are corrected
when the updates are moved to the TMVBT for permanent
storage.

3. VERSIONED B+-TREE
In this section, we describe a B+-tree index for storing

multiple versions of a data item. We define a versioned B+-
tree, or VBT for short, to be a B+-tree that stores entries
of the form (k, v, w), where k is the entry key, v is the ver-
sion of the data item, and w is the value associated with
the entry. The entries are ordered first by the key k, and
then by the version v so that (k1, v1, w1) < (k2, v2, w2) if
and only if k1 < k2 or (k1 = k2) ∧ (v1 < v2). This is an un-
ambiguous ordering since the entries are uniquely identified
by the pair (k, v). Entry deletions are recorded by insert-
ing an entry deletion marker (k, v,⊥) into the VBT. The
version number v in a VBT entry (k, v, w) is the transient
identifier start-time(T) of the transaction T that created the
versioned entry. The final version number of the entry with
which it will be stored in the TMVBT will be the commit
timestamp commit-time(T) of transaction T , if T commits.

Figure 3: An example of a TMVBT. The page header format and the format of index-page entries is ((key range,
version range), page identifier). The format of leaf-page entries is ((key, version range), data-item identifier), but the data-item
identifiers have been left out for clarity. White pages are live pages, the darker pages are dead pages. This TMVBT was
created by transactions 1 and 2 with transaction 1 inserting keys 1–9, and transaction 2 first deleting keys 7–9 and then
inserting keys 10–15.

If the transaction does not commit, but aborts, then the ver-
sioned entry will be physically deleted from the VBT, and
hence will never appear in the TMVBT.

While this extension to the standard B+-tree by itself is
functionally sufficient for storing multiversion data, it can-
not be used as the basis of any larger database index, as
it cannot support range queries efficiently. This is because
the consecutive keys of any given version are not clustered
together, and need to be searched individually. In our ap-
proach, we use the VBT as a small, temporary index where
only the updates of active transactions are stored. Once a
transaction T has committed, the updates performed by T
will be applied to the TMVBT index, which is the main in-
dex structure. The updates of transactions are stored in the
VBT using the aforementioned entries: an entry (k, v, w) is
used to record an insertion (or update) of a key k, while an
entry (k, v,⊥) is used to record a key deletion.

We further define the VBT to have sibling pointers at each
level pointing to the next page at the same level, like in a
Blink-tree [14]. These pointers will be used to accelerate key-
range scans in the tree. Structure-modification operations,
on the other hand, are performed as atomic operations that
transform a structurally valid VBT into another structurally
valid VBT, as described by Jaluta et al. [10, 11].

All updates by user transactions are performed by insert-
ing keys to the VBT. Therefore, all undo actions on the
VBT are physical key deletions. However, if a single trans-
action updates the same key multiple times, the previous
values stored with the key are overwritten, and need to be
restored when rolling back the transaction to a preset save-
point. Thus we write standard physiological redo-undo log
records to log forward-rolling update actions, and redo-only
log records to log undo actions, of user transactions. The
structure-modification operations are logged with redo-only
log records, so that they are never undone. These log records
are used to bring the VBT up-to-date after a single trans-
action has crashed. If the entire database system crashes,
it is possible to bring the VBT up-to-date either by using
ARIES-based recovery [20, 19], or by reconstructing the in-
dex logically based on the log contents, including only the
entries of committed transactions.

4. TRANSACTIONAL MVBT
In this section, we briefly review our transactional exten-

sion (TMVBT) [8] to the multiversion B+-tree (MVBT) by
Becker et al. [4]. The MVBT is an asymptotically optimal
multiversion index structure. In practice, the MVBT guar-
antees that all actions on version v have the same asymptotic
page access bounds as a single version B+-tree index that
contains only the entries that belong to the version v. This
result holds for all versions v of the database. Entries that
belong to the most recent version of the MVBT are called
live entries. Entries that have been deleted from the MVBT
are not physically deleted but marked as killed. Similarly,
entries belonging to a version v are said to be live at version
v. The pages of the MVBT index form a directed acyclic
graph (DAG), instead of a tree. However, a subset of these
pages forms a search tree for version v, for all versions v.
The subset is formed of all pages that are live at version v.
The search trees of different versions may be overlapping,
that is, they may reuse same pages. The asymptotically
optimal bounds are maintained by guaranteeing that each
page p that belongs to the search tree of version v contains
at least min entries that are live at version v, where min
is a configurable variable. Thus, the complexity of all tree
traversal operations in the search tree of version v is log-
arithmic in the number of entries live at version v. Other
index structures do not have this kind of asymptotic guaran-
tee for each version. This makes the MVBT a good choice
for applications where historical data needs to be queried
often, especially in presence of key-range queries.

The original MVBT by Becker et al. [4], however, as-
sumes a single-update transaction model, in which each up-
date causes the database version number to increase. Also,
concurrency-control and recovery algorithms were not dis-
cussed. Our transactional extension to the MVBT, called
the transactional multiversion B+-tree, or TMVBT [8, 9],
extends the transaction model to allow multiple updates to
be applied within a single transaction. We described an ef-
ficient concurrency-control and recovery scheme that allows
a single updating transaction to operate concurrently with
multiple read-only transactions. We have shown that our ex-
tended algorithms maintain all the asymptotically optimal
access time guarantees of the MVBT.

Our extensions are based on the notion of active and in-
active pages and entries. An entry (or a page) is active
when it has been created by the active updating transac-
tion. Similarly, an entry (or a page) becomes inactive im-
mediately when the active updating transaction commits.
Active pages may only contain active entries. Active entries
can be physically moved around and deleted, while inactive
entries are always left in place, with active copies created of
them if necessary. This organization allows us to treat the
active data physically, in the same way as entries are treated
in a B+-tree, and thus we can maintain the optimality guar-
antees within the active version even with multiple updates.
An example of a TMVBT index is given in Figure 3. More
detailed examples can be found in our previous article on
the structure [8].

5. CONCURRENCY AND RECOVERY
The CMVBT allows us to use various approaches for con-

currency control and recovery. Our approach for recovery
follows the ARIES algorithms [20, 19] with physiological log-
ging and standard steal-and-no-force page buffering policy.
Each structure-modification operation on both the VBT and
the TMVBT is logged using a single physiological redo-only
log record, so that interrupted tree-structure modifications
are never rolled back (undone) when a transaction aborts or
system fails. This approach is described by Jaluta et al. [10,
11]. The actions of user transactions on the VBT are logged
with standard redo-undo and redo-only log records, as de-
scribed in more detail in Sec. 3. These log records are re-
quired to support total and partial rollbacks of active trans-
actions. All update actions on the TMVBT are performed
by the maintenance transaction, which is never aborted or
undone. Therefore, redo-only log records are sufficient for
logging the actions performed on the TMVBT. For effi-
ciency, we employ separate page buffers for the TMVBT
and the VBT. This way the entire VBT index is kept in
main memory during normal transaction processing.

Concurrency control on the key level is provided by us-
ing the snapshot isolation (SI) algorithms [5]. In snapshot
isolation, a consistent state of the database is maintained
for each transaction. The state maintained for a transac-
tion T is called a snapshot, and it reflects the committed
state of the database as of the time T started (denoted
snapshot-time(T), see Sec. 7). Read-only transactions al-
ways read data from their own snapshot, and thus do not
require locks to protect the keys from concurrent modifica-
tions. Updates to the database are performed by adding a
new version of the updated key to the snapshot of the up-
dating transaction, allowing updating transactions to read
their own modifications directly from the snapshot. Consis-
tency for updating transactions is guaranteed by checking
that overlapping transactions do not make updates to the
same keys. Snapshot isolation is an obvious choice for multi-
version structures, because the entire history of the database
is preserved, and thus the snapshot state is available for each
transaction. The definition of snapshot isolation by Beren-
son et al. [5] does not include details on how the consistency
checks of SI should be implemented. The commercial Or-
acle database uses a combination of locking and versioning
to achieve snapshot isolation [22]. In Oracle’s implementa-
tion, when transaction T needs to modify key k, it acquires
a commit-duration exclusive lock on k, such that:

• If another transaction T ′ already holds an exclusive
lock on k, T is blocked until T ′ either commits or
aborts. If T ′ finally commits, T is aborted; if T ′ aborts,
T can continue.

• If a transaction T ′ with overlapping execution time
has committed after T began (i.e., commit-time(T ′) >
snapshot-time(T)), and T ′ has updated key k, then T
is aborted immediately.

Note that the exclusive locks taken by updating transactions
in this approach only block other updating transactions, be-
cause read-only transactions take no locks. Following Ora-
cle, we use this approach to achieve snapshot isolation.

Structural consistency of the VBT index is maintained
by standard page-latching operations, with latch-coupling
(also called crabbing by Gray and Reuter [7]) applied to en-
sure child-link consistency during tree traversals. We define
the latching order to be top-down, left-to-right for all trans-
actions, and we disallow upgrading read latches to write
latches. These are necessary (and sufficient) restrictions
to avoid deadlocks caused by page latching [7]. For the
TMVBT, pages need to be latched, but latch-coupling is not
always required. This is because the only transaction that is
allowed to update the TMVBT is the system maintenance
transaction, and there can be only one such transaction run-
ning at a time. Thus, the maintenance transaction does not
need to do latch-coupling. Furthermore, as explained in our
TMVBT paper [8, 9], readers that read inactive data do not
need latch-coupling either. Therefore read-only transactions
that are reading stable versions do not need latch-coupling.
This is explained in more detail in Sec. 7. Further details
of concurrency control and recovery are embedded in the
explanations of the algorithms themselves.

6. MAINTENANCE TRANSACTION
The maintenance transaction is a system-generated trans-

action that is run periodically to move the updates of com-
mitted transactions, one at a time, from the VBT index into
the TMVBT. To ascertain correct operation with concur-
rent user transactions, the updates must be moved in such a
way that the system transaction does not cause user trans-
actions to miss any keys. This is easiest to accomplish by
first applying the updates to the TMVBT, then increasing
the stable version counter vstable, and only then removing
the updates from the VBT. A consequence of this approach
is that the user transactions must be prepared to possibly
encounter the same update twice when scanning the index
structures.

The maintenance transaction performs the following steps:

1. Update the move version counter vmove ← vstable +
1. Find out the corresponding transient transaction
identifier vs ← CTS[vmove].

2. Scan through the VBT, and find all updates of version
vs. Apply the updates to the TMVBT, changing the
version number from vs to vmove.

3. Update the stable version number to vstable ← vmove.

4. Scan through the VBT a second time, and physically
delete all entries with version vs.

5. Remove the mapping vmove → vs from the CTS table.

The actions performed by the maintenance transaction
are logged using redo-only log records. If the system crashes
during the execution of the maintenance transaction Tm,
the redo phase of the restart recovery will redo all actions
performed by Tm to bring the database pages into a consis-
tent state and restart the maintenance transaction. All the
steps of the maintenance transaction are idempotent, mean-
ing that performing them multiple times has the same effect
as performing them once. That is, f(f(x)) = f(x) for all ac-
tions f of the maintenance transaction Tm. Thus, when the
maintenance transaction is restarted after a system crash, it
will automatically skip those actions that already have been
performed.

At the beginning, in step 1, the move version counter is
increased to show that the maintenance transaction is run-
ning. The system must guarantee that there are never two
maintenance transactions running at the same time. Thus,
at the very beginning, the maintenance transaction takes
a commit-duration exclusive lock on a global maintenance-
transaction marker. This action is logged by a redo-only
log record that identifies the action (start the maintenance
transaction) and contains the new vmove counter value and
the corresponding transient transaction identifier vs.

At the next step, step 2, the updates are copied from
the VBT into the TMVBT. The system transaction scans
through both structures at the same time, using a saved
path for the TMVBT and using latch-coupling for the VBT
to maintain structural consistency. However, as the system
transaction is the only transaction updating the TMVBT, no
latch-coupling on the TMVBT is required, and thus only one
page needs to be latched at a time (except during structure-
modification operations). Because the TMVBT does not
have sibling links, the saved path needs to be backtracked
from time to time to locate the next leaf page. Again, be-
cause no other transaction can update the TMVBT concur-
rently, it is safe to relatch pages on the saved path when
backtracking. In the VBT, we can use the sibling links de-
fined in Sec. 3 to traverse through the entire tree efficiently.
Because we are only reading the updates from the VBT at
this point, it is sufficient to only scan through all the leaf
pages of the VBT without ever backtracking. Thus no saved
path is needed for the VBT for this step. Each update that
is performed to the TMVBT is logged using a redo-only log
record.

Step 3 updates the stable version counter vstable. The
counter is protected by simply latching the page where the
counter is stored. At this point we know that all the updates
of transaction T with commit-time(T) = vmove have been
applied to the TMVBT. New read-only transactions can
therefore read the version vmove directly from the TMVBT.
Thus, first a write latch is acquired on the page containing
the counter, the counter is then updated to vstable ← vmove,
and the write latch is released. To speed up recovery, this
action is also logged with a single redo-only log record, and
the log is forced onto the disk at this point. If this log record
is found after a system crash, steps 1–3 of the maintenance
transaction can be skipped entirely, and the maintenance
transaction can continue at step 4 to finish the transaction.

Next, at step 4, the updates are cleared from the VBT.
It is safe to delete these updates, because although delet-
ing the entries may cause concurrent user transactions to
miss an update they expected to find in the VBT, the user
transactions will find the missed update later on from the

TMVBT, where it has already been applied to at this point.
To correctly maintain the structural consistency of the VBT,
the tree must be traversed using a depth-first search so that
structure-modification operations can be performed if pages
contain too few entries after entry deletions. During the
depth-first search, latch-coupling will be applied, first top-
down, then left-to-right, as explained earlier. The delete
actions are logged with redo-only log records.

Finally, in step 5, the temporary transaction identifier
mapping is removed from the commit-to-start (CTS) hash
table. The maintenance transaction commits by writing a
commit log record. The log must be forced onto disk at this
point.

The following theorem states the correctness and com-
plexity of the maintenance transaction:

Theorem 1. Let us denote by n the number of updates
applied by the earliest transient committed transaction with
version vmove, by nV the number of entries in the VBT
and by nT the number of live entries in the TMVBT at
version vmove − 1. The maintenance transaction correctly
transforms the transient version vmove into a stable ver-
sion by applying the updates of the version vmove into the
TMVBT, and by removing these updates from the VBT.
The maintenance transaction requires at most O(nV /B +
min{n log nT , (nT + n)/B}) page accesses, where B is the
page capacity (assumed, for clarity, to be the same for both
structures).

Proof. The complexity of the maintenance transaction is
composed of the VBT and TMVBT index scans of steps
2 and 4. The complexity of both scans of the VBT is the
same, O(nV /B), because a full scan is required for both
of the steps. Maintaining the entire saved path from root
to leaf for the VBT in the deletion phase does not add to
the asymptotic complexity of the scan. Applying the n up-
dates into the TMVBT requires O(n log nT) page accesses
in the worst case, because a single update operation in the
TMVBT requires at most O(log nT) page accesses (see The-
orem 4 in our TMVBT article [8]). However, the leaf pages
of the version tree of the latest version of the TMVBT are
accessed at most once, so the operation is also bound by
O((nT + n)/B); that is, a full leaf-level page scan of the lat-
est version of the TMVBT plus possible new pages created
by insertions. 2

7. USER TRANSACTIONS
We allow two kinds of user transactions to operate concur-

rently on the CMVBT: read-only transactions and updating
transactions. There are no restrictions on how many trans-
actions of either type can be running at the same time. A
read-only transaction Tr may issue single-key queries, range
queries and next-key queries for any version v that was com-
mitted at the beginning of Tr. The version v must be spec-
ified at the beginning of the read-only transaction Tr, and
Tr will see a consistent view of the database at this selected
version. This is in accordance with the snapshot isolation
protocol.

An updating transaction Tu may consist of any sequence of
updates (key insertions and deletions), and queries of version
snapshot-time(Tu) (single-key, range, or next-key queries),
where snapshot-time(Tu) is defined to be the latest version
that was committed when Tu began, that is, vcommit. The
updating transaction Tu may also set savepoints and roll-
back to any preset savepoint. Rolling back to a preset save-

point is accomplished by going through the redo-undo log
records, as explained in the ARIES algorithms [20].

An example of the possible contents of the CMVBT in-
dex is given in Figure 4. This example represents the same
situation as the previous example of Figure 2, but now the
actual entries stored in the different indices are shown.

TMVBT
(1, [1, 2), w1)
(2, [1,∞), w2)
(3, [2, 3), w3)
(3, [3,∞), w3′)
(4, [3,∞), w4)

VBT
(1, 102, w1′)
(2, 101, w2′)
(4, 103,⊥)
(4, 104, w4′)
(6, 101, w6)
(7, 103, w7)

CTS
4→ 103
5→ 101

History of transactions
T1, commit-time(T1) = 1: Insert 1, 2
T2, commit-time(T2) = 2: Insert 3, delete 1
T3, commit-time(T3) = 3: Insert 3, 4
T4, commit-time(T4) = 4: Insert 7, delete 4
T5, commit-time(T5) = 5: Insert 2, 6
T6, start-time(T6) = 102: Insert 1
T7, start-time(T7) = 104: Insert 4

Figure 4: Example of data entries stored in a
CMVBT index. This example represents the same situ-
ation as Figure 2. The format of entries in the TMVBT is
(key, version range, data), and the format of entries in the
VBT is (key, version, data). In addition to the committed
transactions, the VBT also contains entries of two active
transactions with transient identifiers 102 and 104.

For the query and update actions, we can distinguish be-
tween the following different algorithms that must be de-
fined to use the CMVBT. These are: (1) performing an
update action (insert or delete); (2) querying for a key of a
stable version; and (3) querying for a key of a transient ver-
sion. Also, to support range queries and next-key queries,
we need to define algorithms for (4) querying for the next
key of a stable version; and (5) querying for the next key of
a transient version. In the following discussion, we present
algorithms for performing these actions, first in a general
level, and then in more detail.

For the first point, performing an update action on the
CMVBT is reasonably straightforward: all we need to do is
record the action to the VBT, using proper top-down, left-
to-right latch-coupling for tree traversal. An insertion (or
update) of a key k by transaction T with start-time(T) = v
is recorded by adding the entry (k, v, w), where w is the en-
try value; and deletion of a key k by the same transaction
is recorded by adding the entry (k, v,⊥). If the VBT in-
dex already contains an entry (k, v, w′) with the same key
and version, the old entry will be replaced by the new entry.
Otherwise, all update actions always add a new key into the
VBT index. For concurrency control, T acquires a commit-
duration exclusive lock on the key k, as explained in Sec. 5.
All the update actions of a forward-rolling updating trans-
action are logged with a single physiological redo-undo log
record. For more details on logging of update actions on the
VBT, refer to Sec. 3.

Querying for stable versions is also straightforward. Both
read-only and updating transactions can use the same algo-
rithms for querying the index structures, and we will thus

use the term reader to refer to a read-only transaction or
an updating transaction that is performing a query action.
When a version is stable, and the reader knows it to be
stable (the version was stable at the beginning of the read
action), the reader can directly query for the version from
the TMVBT, as explained in our TMVBT article [8, 9]. In
this situation, the TMVBT index can be traversed without
latch-coupling, and saved paths can be used for key-range
and next-key queries without having to check for page valid-
ity when relatching them. This is possible because all pages
traversed and entries read are inactive, and thus guaranteed
to remain where they are located.

When querying for a transient version, more care needs to
be taken. First of all, the reader cannot know beforehand
which index structure contains the most recent update that
precedes the queried version. The relevant version might be
the last update in the TMVBT, or there may be an inter-
mediate update in the VBT. In the example of Figure 4,
when querying for a key of commit-time version 5, the rel-
evant version for key 3 is the last update in the TMVBT
(by transaction T3); and the relevant version for key 2 is the
update in the VBT (by transaction T5 with transient trans-
action identifier 101). Thus, whenever querying for a tran-
sient version, both structures may need to be checked. In
more detail, for single-key queries (with the key given), it is
sufficient to search the VBT if an update on the key is found
from there; only if no such update is found from the VBT
do we need to consult the TMVBT to find the latest update
on the key. However, when performing next-key queries,
we always need to check both structures, because it is im-
possible to determine which structure contains the nearest
key otherwise. Also, because the maintenance transaction
may be moving the updates of the move version vmove to the
TMVBT, the reading algorithms must be prepared to miss
some updates in the VBT, and possibly re-encounter some
updates in the TMVBT. However, the situation is amended
by organizing the read actions in such a way that the VBT
is always consulted first, and the TMVBT only afterwards.
This guarantees that no update will be entirely missed.

The general algorithm for querying for a single key is given
in Algorithm 1. As the stable version counter is protected by
latches, a read latch must be taken on the page that contains
the counter to read the stable version counter value. The
latch can be released immediately after the counter value
has been read. It is also possible to read the counter value
once, at the beginning of the transaction, and then cache the
result. This may lead to a read-only transaction trying to
find updates from the VBT that have already been moved
away from there, but this does not cause problems, because
the updates will be found from the TMVBT later on.

Querying for a single key from the TMVBT (key-query-
TMVBT) works exactly as explained in our TMVBT arti-
cle [8, 9], except that the third parameter is used to indicate
whether the reader might need to read active data and must
therefore use latch-coupling. In other words, if the version is
known to be stable, the traversed paths in the TMVBT are
known to be inactive and thus remain stable. If the reader
is looking for the latest update of a transient version, the
updates might be active in the TMVBT because a concur-
rent maintenance transaction is writing them, and thus the
reader must use latch-coupling to ascertain path validity and
check that previously released pages are still valid when re-
latching them. When reading the pages of the TMVBT, the

Algorithm 1 key-query(k, v, T)

1. if v ≤ vstable then // Is v stable?
2. w ← key-query-TMVBT(k, v, false)
3. else
4. w ← key-query-VBT(k, v, T)
5. if w = ∅ then // If no updates found from VBT
6. w ← key-query-TMVBT(k, v, true)
7. else if w = ⊥ then // Latest update is a deletion
8. return ∅
9. end if

10. end if
11. return w

reader can determine whether a page has been invalidated
by a concurrent structure-modification operation (for exam-
ple, when relatching pages on a previously released saved
path) by internally caching the page-LSN before releasing
latches and comparing the cached value to the value in the
page after it has been relatched. If the new page-LSN is
larger than the cached one, the page has been modified by
the maintenance transaction, and it is necessary to either
re-traverse the entire path from the root of the TMVBT or
to backtrack up the path until an unchanged page is found.

Querying for a single update from the VBT is described
in Algorithm 2. The algorithm generates a reverse start-
to-commit (STC) mapping for all relevant commit-time ver-
sions, mapping the possible updates created by the trans-
action itself to infinity so that they always take precedence
over other updates. A transient identifier list V is also gen-
erated. This list contains the keys of the STC map. The
query-all-VBT(k, V) function finds all entries (k, v) from
the VBT with key k and version v ∈ V . This function is
implemented with a standard tree-traversal operation using
latch-coupling. After finding all the possibly relevant up-
dates, the key-query-VBT function orders the updates in
transaction commit order, and returns the latest update. If
there are no updates on the key k in the VBT, the function
returns the null value ∅. If the last update is a deletion, the
function returns the deletion marker ⊥. These values must
be separate so that the single-key query algorithm knows
whether to continue searching from the TMVBT or not.

In the example situation of Figure 4, the reverse STC map-
ping when querying for commit-time version 5 with a read-
only transaction Tr is {101 → 5, 103 → 4}. If the query-
ing transaction is an updating transaction Tu with transient
transaction identifier start-time(Tu) = 104, the STC map-
ping is {101 → 5, 103 → 4, 104 → ∞}. For example, if
Tu queries for key 4 (at transient commit-time version 5),
the STC is generated as explained above, and the start ver-
sion list V = {101, 103, 104}. The VBT query finds the en-
tries (4, 103,⊥) and (4, 104, w4′), which are then converted
to commit-time entries and placed in the ordered result map
Kc = {4→ ⊥,∞→ w4′}. The query returns the last value
from this map, w4′ , as the result.

When a user transaction T is querying for a single key
k of a transient version v > vstable, and the maintenance
transaction Tm is ongoing, one of the following situations
may occur, regarding an update of version vmove when that
update is the latest update on the key k:

1. T finds the update from the VBT. The update is not
yet in the TMVBT. This is the normal situation, and
no special processing is required.

Algorithm 2 key-query-VBT(k, v, T)

1. STC← ∅
2. V ← ∅
3. for each vc ∈ {vstable + 1, . . . , v} do
4. vs ← CTS[vc] // transient transaction identifier
5. STC[vs]← vc

6. V ← V ∪ vs

7. end for
8. if T is an updating transaction then
9. STC[start-time(T)]←∞

10. V ← V ∪ start-time(T)
11. end if
12. Ks ← query-all-VBT(k, V)
13. Kc ← ∅
14. for each (k, v, w) ∈ Ks do
15. vc ← STC[v]
16. Kc[vc]← w
17. end for
18. return entry Kc[vc] with highest version vc

2. T finds the update from the VBT. The update has
been applied to the TMVBT by the maintenance trans-
action Tm. Because the update was still found from
the VBT, the TMVBT is not searched, and thus this
situation is similar to the first one.

3. T does not find the update of version vmove from the
VBT, because the maintenance transaction Tm has al-
ready deleted it. Because no update was found from
the VBT, the TMVBT is scanned for the latest up-
date. At this point, the maintenance transaction Tm

has already applied the update to the TMVBT, so the
update is found from there.

If there is a newer update with commit-time version vc

such that vmove < vc ≤ snapshot-time(T), then this update
will be found from the VBT in all of the above situations,
and it will be returned directly without ever consulting the
TMVBT.

For next-key queries, the general algorithm is described in
Algorithm 3. When querying for stable versions, it is again
sufficient to only scan through the TMVBT to find the next
key. However, with transient versions, both structures must
always be searched to find the next key.

When searching for a transient version, the next keys from
both structures need to be retrieved alternatingly. In Algo-
rithm 3, starting from line 4, the current key is initialized
to the previously found key. After this, at the beginning of
the infinite loop, both of the index structures are scanned to
the next key, and we check which key is nearest to the previ-
ously fetched key. If the next nearest key is found from the
TMVBT (line 8), we can return the key and the correspond-
ing value directly. If, on the other hand, the nearest key is
found from the VBT (line 10), we must check whether the
latest update in the VBT is an insertion (and not a deletion)
before returning the key. Similarly, if the keys fetched from
both structures are the same (line 14), we need to check that
the latest update on the key in the VBT is not a deletion.
If the latest update is a deletion, we need to skip this key
and scan forward to find the next keys. In this situation,
we must always scan both structures forward, because an
ongoing maintenance transaction might have changed the
nearest key in the TMVBT.

As with the function key-query-VBT, the function next-

Algorithm 3 next-key-query(k, v, T)

1. if v ≤ vstable then // Is v stable?
2. return next-key-query-TMVBT(k, v, false)
3. else
4. kc ← k
5. loop
6. (k1, w1)← next-key-query-VBT(kc, v, T)
7. (k2, w2)← next-key-query-TMVBT(kc, v, true)
8. if k1 > k2 then // Nearest key is in TMVBT
9. return (k2, w2)

10. else if k1 < k2 then // Nearest key is in VBT
11. if w1 6= ⊥ then // Is w1 an insertion?
12. return (k1, w1)
13. end if
14. else // Same key returned from both structures
15. if k1 = ∅ then // No more keys in either index
16. return ∅
17. else if w1 6= ⊥ then // Is w1 an insertion?
18. return (k1, w1)
19. end if
20. end if
21. kc ← k1 // Scan forward in both indices
22. end loop
23. end if

key-query-VBT must find the transient transaction identi-
fiers of all the commit-time versions between vstable and v,
find updates matching these start-time versions, and order
the updates based on their corresponding commit-time ver-
sions. The actual implementation of the next-key query
should use saved paths to accelerate the next-key queries
from the VBT and the TMVBT. With saved paths, most of
the consecutive next-key calls to the VBT and CMVBT will
fall to the same leaf page, and will thus reuse the existing
path without requiring any additional I/O operations. To
further enhance the operation, the latches and page fixes re-
quired for the VBT and TMVBT index structures need not
be released at all between the next-key-query sub-operations
in the main loop of Algorithm 3.

As an example of a next-key query, suppose a read-only
transaction Tr is querying the next key from key 3, at ver-
sion 4, in the example situation of Figure 4. At the beginning
of the next-key-query function, the next entries are fetched
from both structures: (k1, w1) = (4,⊥) (from the VBT) and
(k2, w2) = (4, w4) (from the TMVBT). Because the keys of
both entries are the same, the one retrieved from the VBT
takes precedence. However, because it is a deletion marker,
we need to continue the search to find the next keys. Thus,
the algorithm continues by finding the next entries from key
4 from both of the structures: (k1, w1) = (7, w7) (from the
VBT) and (k2, w2) = ∅ (from the TMVBT). Because the
TMVBT has no more entries, the VBT entry is the next
key, and the key-value pair (7, w7) is thus returned to the
user.

The following theorems state the correctness and complex-
ity of the user actions, expressed in how many pages need
to be visited:

Theorem 2. The update action correctly records a key
update (key insertion or deletion) in the VBT. A single
update action requires O(log nV) page accesses, where nV is
the number of entries in the VBT.

Proof. The update action simply needs to traverse the
VBT once to insert the update marker, so the complexity

O(log nV) comes from the tree traversal. As with standard
B+-trees, any possibly required structure-modification op-
eration does not affect the asymptotic complexity of the ac-
tion. 2

Theorem 3. The key-query action for key k and ver-
sion v correctly returns the most recent committed version
v′ of the queried key, relative to version v so that v′ ≤ v.
A single key-query action for a stable version v requires
O(log nT) page accesses, where nT is the number of en-
tries in the TMVBT that are live at version v. A single
key-query action for a transient version v requires at most
O(log nV + (na + nt)/B + log nT) page accesses, where nV

is the number of entries in the VBT, nT is the number of
entries in the TMVBT that are live at version v, na is the
number of active transactions, nt is the number of transient
versions, and B is the page capacity.

Proof. The key-query action for a stable version similarly
only does a single query to the TMVBT, and thus has a
complexity of O(log nT) [8]. For a transient version, the
VBT search requires O(log nV) page accesses for the initial
tree traversal, and at most an additional O((na+nt)/B) leaf
page accesses to locate all versions that might be relevant
to the key query. Finally, the query for a transient version
may need to further query the value from the TMVBT, thus
adding the O(log nT) term to the complexity. 2

8. RELATED WORK
While there are many other index structures for multi-

version data, the majority of them are not optimal under
all histories of user transactions, at least for all actions
(single key queries, key-range queries, insertions and dele-
tions). The only other optimal multiversion database—to
our knowledge—is the multiversion access structure (MVAS)
of Varman and Verma [24]. The MVAS is similar in struc-
ture to the MVBT, with notable differences only in the split-
ting policies and the access lists of the MVAS that are used
for version-range queries. Thus it also has the same limita-
tions as the original MVBT of Becker et al. [4]. The general
database organization described in this article should be ap-
plicable to the basic structure of the MVAS also. However, it
is unclear to us whether the access lists of the MVBT would
directly support the new concurrent database organization.

Another structure similar to the MVBT is the time-split
B+-tree (TSBT) of Lomet et al. [17, 18], which is used as the
basis of the multiversion database engine Immortal DB in
Microsoft SQL Server [15, 16]. When performing a version-
based split (time-split) in the TSBT, a new page is created
for the historical contents of the old page. Thus, pages that
contain old data can be moved to a slower tertiary storage
after the pages become historical. This is not possible in the
MVBT (or its extensions). However, in the TSBT, certain
types of user transactions may cause the index structure
performance to degrade. This is because leaf pages are never
merged with sibling pages. Thus, key deletions can leave
some leaf pages with only a few live entries (or none at all),
thereby degrading key-range query performance.

Another approach for storing multiversion data is key
hashing. The hashing structure of Kollios and Tsotras [12],
for example, is very efficient for exact-match queries, with an
access time of O(1) in ideal situations. However, key-range
queries cannot be performed efficiently on hashing struc-
tures, because consecutive entries of any given version are

not clustered together. Likewise, it is impossible to find out
the next key of any given key, as the keys are not ordered in
the index structure.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we have designed a concurrent multiversion

database index structure called the concurrent multiversion
B+-tree (CMVBT) which is based on the asymptotically op-
timal multiversion B+-tree (MVBT) of Becker et al. [4]. The
CMVBT uses a separate versioned B+-tree (VBT) index to
store the updates of active transactions. Once the active
transactions have committed, the updates are moved, one
transaction at a time, from the VBT into the main transac-
tional multiversion B+-tree (TMVBT) index. The TMVBT
is our transactional extension to the MVBT that extends
the MVBT to support multi-action transactions [8, 9]. The
CMVBT index retains the optimality of the TMVBT for sta-
ble committed versions, and is thus guaranteed to perform
optimally under any histories of user transactions.

We have designed algorithms for updating and reading
the CMVBT structure concurrently. Standard concurrency-
control and recovery algorithms can be used with these al-
gorithms to allow multiple transactions to operate concur-
rently on the CMVBT structure. The snapshot isolation
algorithms [5] are especially well suited for use with our mul-
tidimensional index structure, and they guarantee snapshot
isolation for all transactions. Our organization allows the
data item version numbers to be efficiently changed from the
transient transaction identifiers into the commit-time ver-
sion numbers. This is a non-trivial issue that often requires
special book-keeping arrangements in other multiversion in-
dex structures that support commit-time version number-
ing. The TMVBT index retains all the optimal access time
guarantees of the MVBT, and therefore queries for stable
versions are optimal. The VBT index is kept small by con-
stantly moving the updates of committed transactions into
the TMVBT index. Thus, the VBT can be kept entirely
in main memory, and we expect that it does not affect the
overall query times of the CMVBT much.

We are currently working on implementing the CMVBT
algorithms in a simulated database environment. Our plan
is to evaluate the performance of the suggested design by
running different transactions on the database simulator.
We will also implement some of the other multiversion in-
dex structures, such as the time-split B+-tree of Lomet et
al. [17, 18], and run the same tests on them. Thus we will
be able to compare our algorithms with other indexing ap-
proaches. Our expectation is that for transaction histories
with little or no key deletes, the CMVBT will perform on
the same level as the TSBT. However, for transaction his-
tories with frequent key deletions, we expect the CMVBT
to outperform the TSBT because of the the optimality of
the underlying TMVBT index structure. This should be
especially apparent with large key-range queries.

10. ACKNOWLEDGMENTS
This work has been funded by the Academy of Finland.

11. COPYRIGHT
c©ACM, 2009. This is the author’s version of the work.

It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was

published in the 13th International Database Engineering
and Applications Symposium, 2009, http://doi.acm.org/10.
1145/1620432.1620441.

12. REFERENCES
[1] Proceedings of the 1992 ACM SIGMOD International

Conference on Management of Data. ACM Press New
York, NY, USA, 1992.

[2] R. Bayer and E. McCreight. Organization and
maintenance of large ordered indexes. Acta
Informatica, 1(3):173–189, 1972.

[3] R. Bayer and M. Schkolnick. Concurrency of
operations on B-trees. Acta Informatica, 9(1):1–21,
1977.

[4] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and
P. Widmayer. An asymptotically optimal multiversion
B-tree. The VLDB Journal—The International
Journal on Very Large Data Bases, 5(4):264–275,
1996.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of
Data, pages 1–10. ACM New York, NY, USA, 1995.

[6] D. Comer. Ubiquitous B-tree. ACM Computing
Surveys, 11(2):121–137, 1979.

[7] J. Gray and A. Reuter. Transaction processing:
concepts and techniques. Morgan Kaufmann, 1993.

[8] T. Haapasalo, I. Jaluta, B. Seeger, S. Sippu, and
E. Soisalon-Soininen. Transactions on the multiversion
B+-tree. In Proceedings of the 12th International
Conference on Extending Database Technology, pages
1064–1075, 2009.

[9] T. Haapasalo, I. Jaluta, S. Sippu, and
E. Soisalon-Soininen. Concurrency control and
recovery for multiversion database structures. In
Proceedings of the 2nd PhD Workshop on Information
and Knowledge Management, pages 73–80, 2008.

[10] I. Jaluta, S. Sippu, and E. Soisalon-Soininen.
Concurrency control and recovery for balanced B-link
trees. The VLDB Journal—The International Journal
on Very Large Data Bases, 14(2):257–277, 2005.

[11] I. Jaluta, S. Sippu, and E. Soisalon-Soininen. B-tree
concurrency control and recovery in page-server
database systems. ACM Transactions on Database
Systems, 31(1):82–132, Mar 2006.

[12] G. Kollios and V. Tsotras. Hashing methods for
temporal data. IEEE Transactions on Knowledge and
Data Engineering, 14(4):902–919, 2002.

[13] S. Lang, J. Driscoll, and J. Jou. Batch insertion for
tree structured file organizations—improving
differential database representation. Information
Systems, 11(2):167–175, 1986.

[14] P. Lehman and B. Yao. Efficient locking for
concurrent operations on B-trees. ACM Transactions
on Database Systems, 6(4):650–670, Dec 1981.

[15] D. Lomet, R. Barga, M. Mokbel, G. Shegalov,
R. Wang, and Y. Zhu. Immortal DB: transaction time
support for SQL server. In Proceedings of the 2005
ACM SIGMOD International Conference on
Management of Data, pages 939–941, 2005.

http://doi.acm.org/10.1145/1620432.1620441
http://doi.acm.org/10.1145/1620432.1620441

[16] D. Lomet, R. Barga, M. Mokbel, G. Shegalov,
R. Wang, and Y. Zhu. Transaction time support inside
a database engine. In Proceedings of the 22nd
International Conference on Data Engineering, 2006.

[17] D. Lomet and B. Salzberg. Access methods for
multiversion data. In Proceedings of the 1989 ACM
SIGMOD International Conference on Management of
Data, pages 315–324, 1989.

[18] D. Lomet and B. Salzberg. The performance of a
multiversion access method. In Proceedings of the 1990
ACM SIGMOD International Conference on
Management of Data, pages 353–363. ACM New York,
NY, USA, 1990.

[19] C. Mohan. ARIES/IM: an efficient and high
concurrency index management method using
write-ahead logging. In Proceedings of the 1992 ACM
SIGMOD International Conference on Management of
Data [1], pages 371–380.

[20] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM
Transactions on Database Systems, 17(1):94–162,
1992.

[21] C. Mohan and I. Narang. Algorithms for creating
indexes for very large tables without quiescing
updates. In Proceedings of the 1992 ACM SIGMOD
International Conference on Management of Data [1],
pages 361–370.

[22] Oracle. Oracle Database Concepts 11g Release 1
(11.1). http://download.oracle.com/docs/cd/B28359_01/
server.111/b28318/toc.htm, Apr 2009.

[23] K. Pollari-Malmi, J. Ruuth, and E. Soisalon-Soininen.
Concurrency control for B-trees with differential
indices. In Proceedings of the 2000 International
Database Engineering and Application Symposium,
pages 287–296, 2000.

[24] P. Varman and R. Verma. An efficient multiversion
access structure. IEEE Transactions on Knowledge
and Data Engineering, 9(3):391–409, 1997.

http://download.oracle.com/docs/cd/B28359_01/server.111/b28318/toc.htm
http://download.oracle.com/docs/cd/B28359_01/server.111/b28318/toc.htm

	1 Introduction
	2 Concurrent MVBT
	3 Versioned B-tree
	4 Transactional MVBT
	5 Concurrency and recovery
	6 Maintenance transaction
	7 User transactions
	8 Related Work
	9 Conclusions and Future Work
	10 Acknowledgments
	11 Copyright
	12 References

