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Many important database applications need to access previous versions of the data set, thus requiring that
the data are stored in a multiversion database and indexed with a multiversion index, such as the multiversion
B+-tree (MVBT) of Becker et al. The MVBT is optimal, so that any version of the database can be accessed as
efficiently as with a single-version B+-tree that is used to index only the data items of that version, but it cannot
be used in a full-fledged database system because it follows a single-update model, and the update cannot be
rolled back.

We have redesigned the MVBT index so that a single multi-action updating transaction can operate on the index
structure concurrently with multiple concurrent read-only transactions. Data items created by the transaction
become part of the same version, and the transaction can roll back. We call this structure the transactional
MVBT (TMVBT). The TMVBT index remains optimal even in the presence of logical key deletions. Even
though deletions in a multiversion index must not physically delete the history of the data items, queries and
range scans can become more efficient, if the leaf pages of the index structure are merged to retain optimality.

For the general transactional setting with multiple updating transactions, we propose a multiversion database
structure called the concurrent MVBT (CMVBT), which stores the updates of active transactions in a separate
main-memory-resident versioned B+-tree index. A system maintenance transaction is periodically run to apply
the updates of committed transactions into the TMVBT index. We show how multiple updating transactions
can operate on the CMVBT index concurrently, and our recovery algorithm is based on the standard ARIES
recovery algorithm.

We prove that the TMVBT index is asymptotically optimal, and show that the performance of the CMVBT
index in general transaction processing is on par with the performance of the time-split B+-tree (TSB-tree) of
Lomet and Salzberg. The TSB-tree does not merge leaf pages and is therefore not optimal if logical data-item
deletions are allowed. Our experiments show that the CMVBT outperforms the TSB-tree with range queries in
the presence of deletions.
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Versioidun tiedon haku tietokantatransaktioissa
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Perinteisesti tietokantasovellusten tietokantaan tekemät päivitykset korvaavat tietokannan tilan uudella, jolloin
aiempaa tilaa eli versiota ei enää ole olemassa. Nykyisin tietokantasovelluksilla haetaan kuitenkin myös aiem-
pien versioiden monikoita, mikä tulee ottaa huomioon tietokantojen hakemistorakenteiden suunnittelussa. Bec-
ker ja kumppanit ovat kehittäneet moniversio-B+-puun (multiversion B+-tree, MVBT), joka on eräs optimaalinen
moniversiohakemistorakenne. Optimaalisuus tarkoittaa tässä sitä, että kaikki operaatiot ovat aina yhtä tehok-
kaita kuin vastaavassa yhden version hakemistorakenteessa. MVBT-rakenteen rajoitteena on kuitenkin se, että
siinä yksi versio voi sisältää vain yhden päivitysoperaation, kun taas transaktiomallissa yksi transaktio voi tehdä
monta päivitystä. Toinen rajoite rakenteessa on se, että päivityksiä ei voi peruuttaa.

Väitöskirjassa laajennetaan MVBT-rakennetta siten, että yksi transaktio voi päivittää useampaa avainta ja
transaktiot voidaan peruuttaa. Laajennetussa transaktionaalisessa MVBT -rakenteessa (transactional MVBT,
TMVBT) voidaan yhtä päivitystransaktiota suorittaa rinnakkain usean lukutransaktion kanssa. Hakemistora-
kenne on optimaalinen kaikissa tilanteissa, myös poisto-operaatioiden jälkeen.

TMVBT-rakennetta ei voi sellaisenaan käyttää tilanteissa, joissa tietokantasovelluksessa täytyy suorittaa rin-
nakkain useita päivitystransaktiota. Näitä tilanteita varten väitöskirjassa esitellään rinnakkainen MVBT -rakenne
(concurrent MVBT, CMVBT), joka koostuu TMVBT-rakenteesta sekä sen rinnalla toimivasta keskusmuistissa
pidettävästä versioidusta B+-puusta (VBT), johon aktiivisten transaktioiden muutokset tallennetaan trans-
aktioiden suorituksen ajaksi. Kun transaktiot sitoutuvat, muutokset siirretään versioidusta B+-puusta TMVBT-
rakenteeseen. CMVBT toimii yleisten rinnakkaisuudenhallinta-algoritmien kanssa ja sen elvytysalgoritmi pe-
rustuu yleisesti käytettyyn ARIES-elvytysalgoritmiin.

Väitöskirjassa todistetaan, että päähakemistorakenteena toimiva TMVBT on optimaalinen. Lisäksi osoitetaan
kokeellisesti, että CMVBT-rakenne on yhtä tehokas kuin Lometin ja Salzbergin TSB-puu (time-split B+-tree)
yleisissä kyselyissä ja päivityksissä, sekä tehokkaampi avainvälihauissa, kun tietokannasta on poistettu moni-
koita. Tehokkuusero johtuu siitä, että TSB-puu ei yhdistä tietokantasivuja eikä täten ole optimaalinen.
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CHAPTER 1

Introduction

Modern society has become dependent on large software systems that rely
on databases for storing important data. These database systems tradi-
tionally maintain only a single version of the stored data set. Updates
to the database erase the information content of any previous states, and
therefore these databases cannot be used efficiently by any application
that needs to query the history of the database. There are many appli-
cations, however, that do require access to previous database states, such
as trend-processing and inventory control applications. Furthermore, any
business-critical applications would benefit from the accountability and
traceability that is obtained when the past database states are not deleted,
so that it is always possible to find out if a change to the database state
has occurred, and what was changed.

In general, we can identify several major application areas that re-
quire access to past database states. These are, for example, applications
that deal with evolving data, such as engineering design, land register,
and scheduling applications, inventory control systems and moving object
databases [8, 10, 94]; statistical applications such as decision support sys-
tems and online analytical processing (OLAP) applications [10, 42]; and
applications that require accountability, such as medical, legal, financial,
accounting, banking, and insurance applications [42, 58, 94]. It is theoret-
ically possible to reconstruct past database states based on database logs
and system backups, but this is time-consuming and costly, and thus not
feasible for everyday statistical queries. The applications listed here need
a database structure that is specifically tailored for storing the evolution
of the data items alongside with the data items themselves. These kind
of databases are generally called temporal databases [14].

When new updates are made to a temporal database, the database
states are updated to reflect the state of the world at different time in-
stants. In temporal database theory, there are two orthogonal definitions

1



CHAPTER 1 INTRODUCTION

for system-supported time: transaction time and valid time [14]. Valid
time is used to record the time when a modelled event happens in the
real world, and transaction time is used to mark the time when an event
or a data item has been recorded in the database. Temporal databases
that support both of these time dimensions are called bitemporal data-
bases [14]. A traditional database that does not incorporate either valid
time or transaction time is called a snapshot database.

Some transaction-time databases allow data items to evolve along dif-
ferent time lines, so that a new version may be based on any previous
version, not just the latest current version. This time model is required
by applications such as engineering design software and version control
systems, and the databases that follow this model are called fully per-
sistent databases [76]. Most of the temporal databases, however, are
designed to work with a single linear data history, in which a new ver-
sion of the data set is always created based on the most recent database
version. These database systems are called partially persistent databases,
and they are used by applications that record events that happen in the
real world. Partially persistent transaction-time databases are called mul-
tiversion databases by many authors [8, 10, 43, 58, 92], and the different
transaction-time instants in these databases are called versions. The data-
base thus starts with an initial version, and any updates to the database
create new versions of the stored data item set. The most recent version
of the database is called the current version of the database. In this
dissertation, we concentrate our research on multiversion databases.

Temporal databases are not a new idea. The need for supporting the
time dimension in database systems has been long identified; for exam-
ple, Bubenko has presented a conceptual framework for incorporating the
temporal dimension into database management systems some thirty years
ago [18]. Consequently, there now exists a multitude of different tempo-
ral database index structures. Most of these are specifically tailored for
some operations, and they are either inefficient for other standard data-
base operations, or their performance may deteriorate with some histo-
ries of user actions. Because of this, these structures are not suitable
for use as general-purpose temporal indexes. For example, multiversion
index structures that are based on hashing techniques are very efficient
for single-key queries [45], but they cannot be used for efficient key-range
queries. Similarly, tree-duplicating indexes can be queried efficiently [78],
but updating them is inefficient. To our knowledge, the most efficient
multiversion indexes are the time-split B+-tree (TSB-tree) of Lomet and
Salzberg [58, 59], the multiversion B+-tree (MVBT) of Becker et al. [7, 8],
and the multiversion access method (MVAS) of Varman and Verma [92].
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The comparison of different multiversion index structures is naturally
dependent on how we define the efficiency of a given index structure.
One such ranking is based on the asymptotic optimality of the index op-
erations. That is, if we can define what the performance of an optimal
multiversion index structure is, we can compare the structures by analyz-
ing how much their performance differs from the optimal performance. In
single-version (snapshot) databases, the most commonly used index struc-
ture is the B-tree [5, 6, 23]. The B-tree has many variants, of which the
B+-tree is the most often used. The B+-tree is regarded to be an asymp-
totically optimal database index structure for snapshot databases. All
single-key operations on the B+-tree (item query, insertion, and deletion)
require access to Θ(logBm) pages of the B+-tree index [23], where m is the
number of data items indexed by the B+-tree and B is the page capacity;
and the range-query operation requires access to Θ(logBm+r/B) B+-tree
pages, where r is the number of data items in the queried range. This
holds for all histories of user actions and guarantees that the performance
of the B+-tree index never deteriorates.

When querying for data items of a given version v, an ideal multiver-
sion index structure should work as efficiently as a single-version index
structure that only contains the items that are part of the queried ver-
sion v. Conceptually, an index structure that creates a new index tree
for each database version achieves this optimality for all query actions,
assuming that the root page of the queried version is known; but not
for update actions. The single-key operations in an asymptotically op-
timal multiversion index structure may thus require access to at most
O(logBmv) disk pages, where mv is the number of data items that are
part of the queried version v; and the range-query operation may require
access to at most O(logBmv + r/B) pages. With this definition, only
the MVBT [7, 8] is optimal. The MVAS [92] guarantees a slightly dif-
ferent upper bound on the number of page accesses per operation (see
Section 4.5), and the TSB-tree [58, 59] has no guarantees if the database
history contains deletions.

There are still other requirements for a multiversion database index
structure that is to be used in a general-purpose database management
system. Firstly, it must be possible to perform multiple updates within a
single version in the database to accommodate all the updates of a multi-
action updating transaction. Both the MVBT and the MVAS unfortu-
nately require that each update creates a new version, so that multiple
updates always result in multiple versions of the database. Secondly, it
must be possible to use concurrency-control and recovery algorithms with
the index structure so that multiple transactions may query and update
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the index structure concurrently. The MVBT and the MVAS only allow
a single updating transaction to make modifications to the structure at a
time, and the transaction cannot be rolled back. The TBS-tree [58, 59]
does not have these restrictions, but it fails to guarantee optimality for
any of its operations if the database history contains deletions.

The purpose of this dissertation is to design and implement an ef-
ficient multiversion database index structure for indexing the evolution
of the logical data set. The structure should be optimal, or as close to
optimal as possible; and the structure must be usable in a multi-user
environment with multiple updating and read-only transactions that are
running concurrently. We have selected the asymptotically optimal multi-
version B+-tree structure of Becker et al. [7, 8] as the basis of our research
work. Our index structure is based on the ideas we have presented in
two conference articles [35, 37] and one PhD workshop article [36]; I have
been the primary author in all of these articles. We have shown how to
extend the MVBT structure into the transactional multiversion B+-tree
(TMVBT) so as to allow a single multi-action transaction to operate on
the structure at a time [35], but we have not been able to extend the
TMVBT further so that multiple updating transactions could operate on
it concurrently, without compromising the optimality of the index struc-
ture. We have therefore used a separate main-memory-resident versioned
B+-tree (VBT) structure to store the updates of active transactions, so
that a system maintenance transaction can apply the updates of com-
mitted transactions to the TMVBT successively, one transaction at a
time [37]. We call the combined index structure the concurrent multiver-
sion B+-tree, or CMVBT.

Logical data consistency in the CMVBT can be maintained by using
any standard multiversion concurrency-control algorithm, such as snap-
shot isolation [11, 19, 28]. Our algorithms are based on the ARIES re-
covery algorithm [63, 66], and we perform structure-modification opera-
tions (SMOs) on all of the index structures atomically, so that each SMO
transforms a structurally valid and balanced index structure into another
structurally valid and balanced index [39–41].

We show in this dissertation that the combined CMVBT index is
efficient: the performance of the CMVBT is comparable to that of the
TSB-tree in general transaction processing, but the CMVBT outperforms
the TSB-tree in range queries when the database history contains key
deletions. The TSB-tree performs worse with key deletions because it
does not merge pages. We further strengthen the test results by show-
ing that the performance of the combined CMVBT index organization is
comparable to the performance of the optimal TMVBT index. In fact,
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with longer transactions, the CMVBT performs better, because the main-
memory-resident VBT index groups all the updates of a single transaction
together, thus enabling them to be inserted in the TMVBT as an efficient
batch update. Batch updating is commonly used to increase the perfor-
mance of index structures [72, 73].

We begin the dissertation with a general introduction to multiversion
database theory in Chapter 2. After that, in Chapter 3, we describe
the evolution of multiversion index structures and present a survey of
some of the existing structures. In Chapter 4, we review three of the
most efficient multiversion structures; namely, the TSB-tree of Lomet
and Salzberg [58, 59], the MVBT of Becker et al. [7, 8], and the MVAS of
Varman and Verma [92]. Chapter 5 describes our transactional extension
to the MVBT, and shows how the TMVBT index retains the optimality
of the MVBT. In Chapter 6, we present the concurrent multiversion
B+-tree, which is a fully concurrent index structure that is composed of
the TMVBT index and a main-memory-resident versioned B+-tree index
that is used for storing the updates of active transactions. After that,
in Chapter 7, we evaluate the performance of the CMVBT index and
compare it to the TSB-tree. We have implemented both indexes and
present the results of our test runs on them. Finally, in Chapter 8, we
give the conclusions of the research work.
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CHAPTER 2

Transactions on Multiversion Data

The theory of general transaction processing in traditional databases is
well-defined and mature, and the basic principles are well presented in
many textbooks [13, 32, 71]. In this chapter, we concentrate on the the-
ory of multiversion transaction processing, and highlight the differences
to classical transaction theory. The traditional read-write model assumes
that transactions are sequences of reads and writes on data items, without
distinguishing item deletions and insertions from updates [13, 71]. The
theory of transaction processing in this dissertation is based on the recov-
erable transaction model presented by Sippu and Soisalon-Soininen [84],
which in turn is based on the model proposed by C. Mohan [63, 64].
In this model, data-item insertions and deletions are made explicit, and
structure-modification operations are included in the model. We assume
the partially persistent transaction-time model, as described in the intro-
duction. We will use the terminology presented in the consensus glossary
of temporal database concepts by Böhlen et al. [14], for the relevant parts.
The chapter begins with a short review of the fundamental concepts of
transaction management in traditional databases, and continues to de-
scribe the most important aspects of multiversion database theory.

2.1 Fundamentals of Snapshot Database Theory

We assume our logical database consists of data items of the form (k,w),
where k is the key and w is the value of the data item [84]. The logical
model thus has no knowledge of any time dimension. Databases that fol-
low this data model are called snapshot databases . As Figure 2.1 shows,
any change to a snapshot database overwrites the information about pre-
vious states. The schedule of a transaction, as shown in the figure, is a
list of actions issued by the transaction. The format of the schedule is
explained in the following paragraphs.
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Figure 2.1. Transaction in a snapshot database. The transaction has
executed the schedule bw[1, α,α′]d[2]w[5, ε]c.

In the traditional transaction model, transactions in snapshot data-
bases consist of user actions that either write keys to or read keys from
the database. In addition, a transaction must issue either a commit or an
abort action to indicate that the transaction is finished. After an abort
action, the read and write actions are undone and the transaction com-
mits. A read action of a key k by a transaction Ti is denoted by ri[k],
and a write action by wi[k]. The commit and abort actions are denoted
by ci and ai, respectively. This classical transaction model is inadequate
for modelling key-range queries and next-key queries, and it does not
differentiate between key insertions, updates, and deletes. Mohan has
proposed a more general transaction model alongside his ARIES recovery
algorithm [63, 64], which Sippu and Soisalon-Soininen have further re-
fined [84]. In the model of Sippu and Soisalon-Soininen, transactions may
retrieve the first matching data item (k,w) for which k θ x, where θ is
either > or ≥ and x is a given search key; insert a new data item (k,w); or
delete the data item that has the supplied key k. In this model, key-range
queries are performed by consecutive key retrievals with θ set to > and
xi+1 = ki. Retrieval of a data item (k,w) with k θ x by transaction Ti
is denoted by ri[k, θx,w]; insertion of data item (k,w) by ni[k,w]; and
deletion of data item (k,w) by di[k,w]. Transactions must also issue an
explicit begin action bi before performing any other operations.

Updating an existing data item is often not defined as a separate
action, but rather implemented by first deleting the existing data item and
then inserting the new data item to replace the old one. For convenience
and simplicity, we define a write action to either insert a new data item, if
no data item with the same key already exists; or to first logically delete
an existing data item and then replace the deleted data item by a new one.
A write action of transaction Ti inserting a data item (k,w) is denoted
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by wi[k,w], and a write action replacing an existing data item (k,w′) by
(k,w) is denoted by wi[k,w′,w]. We do not equate the term “update”
with the write action, because a key deletion is also an update action.
An update action can thus refer to any data-item modifying action. We
will follow this combined model with read, write, and delete actions in
this dissertation. When sufficient, we will use shortened forms ri[k, θx]
(or ri[k] as a shorthand for ri[k,=k]) to denote item retrieval, wi[k] to
denote the write action, and di[k] to denote the delete action; possibly
omitting the indices if discussing only a single transaction.

Transactions that only consist of data-item retrieval actions are called
read-only transactions, and transactions that include write and delete
actions (as described above) are called updating transactions. Updating
transactions modify the same data set, in the order the update actions are
issued. Concurrency-control and recovery algorithms are used to maintain
the ACID properties of transactions: atomicity, consistency, isolation, and
durability [32]. If a database management system supports the serializable
isolation level, the actions of the transactions will be executed in such an
order that the outcome is the same as if the transactions had executed in
a serial order, each transaction in its entirety in isolation from the others.

Transaction isolation in databases is achieved by using a concurrency-
control algorithm, such as key-value locking (also known as key-range
locking [32, 63]). The ANSI/ISO SQL-92 specification [3] defines four iso-
lation levels based on the anomalies that can occur during the execution of
concurrent transactions. The isolation levels are named (1) read uncom-
mitted, (2) read committed, (3) repeatable read, and (4) serializable. The
initial definition of the phenomena, however, fails to properly classify the
different isolation levels. Berenson et al. propose an updated model for
the isolation levels [11]. The anomalies, or phenomena, that cannot occur
in each of the levels in the updated model are (1) dirty writes, (2) dirty
reads, (3) fuzzy reads, and (4) phantoms. The phenomena exclusion is
additive, so that transactions operating on the repeatable read level must
not encounter dirty writes, dirty reads, or fuzzy reads; but may encounter
phantoms. Only the serializable isolation level avoids all the anomalies,
and thus guarantees transaction isolation.

The serializable isolation level is implemented by key-value locking,
for example. In fact, phantom avoidance cannot be achieved by locking
schemes that only lock those key values that have been read or written.
The key-value locking approach avoids phantoms by locking both the
accessed key and the next key found in the database [63, 64], thus in
effect locking the range of keys from the accessed key to the next existing
key. Another approach for avoiding phantoms is to use predicate locking,
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but this is often unpractical as predicate satisfiability in general is a known
NP-complete problem and thus the approach can be highly inefficient [32].
A drawback of the serializable concurrency-control algorithms is that they
hinder the overall performance of the database system by forcing other
transactions to wait for access to locked keys. Database management
systems thus allow the user to set some transactions to run on a lower
isolation level to enhance the performance of the system.

Recovery is another important aspect of database systems. Applica-
tions rely on databases to maintain their data and to make sure that the
data is available and consistent even after a system crash. The standard
recovery algorithm is the ARIES algorithm (Algorithm for Recovery and
Isolation Exploiting Semantics [63–66]), which was developed by C. Mo-
han at IBM. The ARIES algorithm is used in many commercial data-
base systems, such as IBM DB2 and Microsoft SQL Server [65]; and it
is taught in database courses in many universities, including ours. The
algorithm maintains data integrity even in the presence of system crashes,
and guarantees that the data set contains all the updates of all committed
transactions, and none of the updates of transactions that were aborted or
had not committed before the system crashed. In our discussion, we will
assume the standard write-ahead-logging (WAL [66]) and steal-and-no-
force page-buffering policy [32]. Under these policies, the buffer manager
may steal unfixed dirty pages from the page buffer and flush them to
disk, possibly causing updates of uncommitted transactions to be written
to disk (steal). When a transaction commits, the log is forced to the disk,
but the dirty pages are not (no-force). Whenever writing a data page
to the disk, the log file must first be written so that all the updates in
the disk versions of the data pages are also present in the disk version
of the log, as dictated by the write-ahead-logging policy. Furthermore,
the log file must be flushed to disk whenever committing a transaction,
at least up to and including the log entry for the commit action. These
requirements are necessary to ensure that database recovery can bring
the database to a consistent state after a system crash.

2.2 Different Concepts of Time and History

The concept of time in connection with database theory has multiple defi-
nitions. The latest consensus glossary of temporal database concepts [14]
presents three different definitions for time: valid time, transaction time,
and user-defined time. The first of these, valid time, is the time when a
recorded fact (data item) is true in the modelled reality. Valid time is usu-
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ally provided by the user, and it may be changed later if the corresponding
real-life fact changes. For example, events in a calendar database have
starting times and ending times. These times may naturally be changed
if the event is rescheduled to another time, and the time of the scheduled
event is thus an example of valid time in a database. It should be noted
that the valid time may also be a single time instant, instead of a time
range. Any change in a valid-time database overwrites the information
about the earlier state of the database, in the same way as in snapshot
databases. An example of a transaction operating in a valid-time data-
base is shown in Figure 2.2.
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Figure 2.2. Transaction in a valid-time database. The transaction has
executed the schedule bw[1, α,α′]d[2]w[5, ε]c.

The second time concept, transaction time, is used to record the time
when a data item is current in the database and may be retrieved. The
transaction time of a data item is always an interval which begins when the
item is stored in the database. Initially, the end of the transaction-time
interval is undefined, and the item is retrievable in all transaction-time
instants starting from the instant the item was inserted into the database.
Transaction time is always provided by the database management system,
and it must be an increasing value so that the ordering of the transaction-
time instants is consistent. The transaction-time interval of a data item
is called a life span, and we give a formal definition below:

Definition 2.1. The life span of a data item is a closed-open transac-
tion-time interval #–v = [v1, v2). The time instant v1 is called the creation
time of the data item, and it specifies the transaction-time instant when
the item was inserted to the database. Similarly, v2 is called the deletion
time of the data item, and it specifies the transaction-time instant when
the item was deleted. If the data item has not been deleted, v2 = ∞. ◻

11



CHAPTER 2 TRANSACTIONS ON MULTIVERSION DATA

In transaction-time databases, all the data items have an associated
life span, and we call them multiversion data items to distinguish them
from the data items of the logical database. The formal definition of a
multiversion data item is given later (in Definition 2.7), but from now on,
we will use the term data item to mean a multiversion data item. When
we wish to refer to the data items of a snapshot database (i.e., data items
without associated life spans), we will use the term snapshot data item.

In contrast to snapshot and valid-time databases, any change in a
transaction-time database creates a new state and thus does not overwrite
any previous states. An example of this is shown in Figure 2.3.
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Figure 2.3. Transaction in a transaction-time database. The transaction
has executed the schedule bw[1, α,α′]d[2]w[5, ε]c. The arrow on the top
shows the latest committed version vcommit .

The transaction-time instants are often called database versions, as
the contents of the database item set may only change between each
transaction-time instant. Because this term is used by many authors, we
will use the term version from now on to mean transaction-time instants.
Moreover, we will use the term alive to mean that a data item is part of
the current data set. This is defined more formally for different versions
below:

Definition 2.2. A data item is alive at version v, if the life span of
the data item covers v; that is, if v1 ≤ v < v2, where [v1, v2) is the life span
of the data item. Queries that target a version v only return items that
are alive at version v. ◻

If v < v1 or v ≥ v2, the data item is not part of database version v. We
call the most recent committed database version the current version of
the database. This version is denoted by vcommit .
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Definition 2.3. A data item is alive if it is alive at version vcommit . ◻

The data items that are alive at version v form a database state sv. A
transaction-time database thus consists of a series of consecutive states
s0, s1, . . . , svcommit . Data items that belong to database state sv automat-
ically belong to the next state sv+1, unless they are explicitly deleted at
version v + 1. The state svcommit , identified by the current database ver-
sion vcommit , is called the current state, and all the states sv ∶ v < vcommit

preceding the current state are called historical states.
Efficient queries within the transaction-time domain or the valid-time

domain require database index structures that are specifically designed for
such queries. In contrast, the third time concept, the user-defined time, is
an uninterpreted attribute used to refer to any application-specific time
value. The user-defined time has no special meaning in the database
management system. Database systems are thus categorized by their
ability to index valid time and transaction time. Valid-time databases can
be used to index events that occur at some time in the modelled reality.
Database systems that can be used to access historical states are called
transaction-time databases. Database systems that encompass both of
these time dimensions are called bitemporal databases. This taxonomy of
the time dimension was first presented by Snodgrass and Ahn [85]. The
terms transaction time, valid time, and user-defined time were introduced
to replace the previous, vague terms physical and logical time. Finally, we
will use the term real time to mean the time of the real world (often called
user time or wall-clock time). In practice, valid time is often the same as
real time, but it can also be used to model some other time domain. For
example, consider a valid-time database used in a science-fiction game—
the time in the modelled virtual universe would be the valid-time domain
in this case.

An example of the possible contents of a bitemporal database, shown
in Figure 2.4, clarifies the difference between the time concepts. This
example has been adapted from the taxonomy of time by Snodgrass and
Ahn [85]. Reading from the contents of the example database, Merrie was
appointed as an associate professor 1st January 2001, but this fact was
entered into the database earlier on, on the 20th December. Merrie was
promoted to full professorship 1st May 2003, the fact of which was retroac-
tively inserted into the database on the 5th. Associate professor Tom’s
employment begun 10th March 2003, which was tentatively recorded to
the database on the 7th of March. On the 13th, it was however noted
that he had been accidentally recorded as being a full professor, and the
fact was then corrected. Mike left the faculty 16th May 2005, which was
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Name Rank Valid time Transaction time
From To From To

Merrie Associate 2001-01-01 ∞ 2000-12-20 2003-05-05
Merrie Associate 2001-01-01 2003-05-01 2003-05-05 ∞
Merrie Full 2003-05-01 ∞ 2003-05-05 ∞
Tom Full 2003-03-10 ∞ 2003-03-07 2003-03-13
Tom Associate 2003-03-10 ∞ 2003-03-13 ∞
Mike Assistant 2004-03-22 ∞ 2004-03-24 2005-05-17
Mike Assistant 2004-03-22 2005-05-16 2005-05-17 ∞

Figure 2.4. Examples of the use of valid time and transaction time in a
bitemporal database.

recorded to the database on the 17th. Note that only the bitemporal data-
base model records all these aspects of the evolution of the employment
data.

Yet another aspect of temporal databases is data persistence. In con-
trast to other database types, transaction-time databases and bitemporal
databases offer more in terms of traceability and accountability, because
the entire history of database states is stored and available for querying.
By the terminology of Driscoll et al. [24], transaction-time databases and
bitemporal databases are called persistent databases, whereas snapshot
databases and valid-time databases are called ephemeral databases.

Intuitively, when using a transaction-time database to model changes
in reality, a linear version history is often appropriate. In this model,
a new database version is always based on the current version of the
database:

Definition 2.4. A partially persistent transaction-time database in-
corporates a linear history, in which new versions of data items are created
based on the most recent version. ◻

Many engineering applications, such as version control systems and
engineering design databases, require that new versions can be based on
any earlier version:

Definition 2.5. A fully persistent transaction-time database system
allows new versions to be created based on any earlier version, thus en-
abling the creation of branching and diverging histories. ◻

Note that an implication of this definition is that every fully persistent
database system is necessarily also a partially persistent database system.
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Most of the temporal database systems are designed on the partially
persistent transaction-time model. These database systems are called
multiversion databases by many authors [8, 10, 43, 58, 92]. From now
on, we will be discussing multiversion databases based on this definition.
Fully persistent database systems are discussed by other authors [50, 77].
In fully persistent databases, a central challenge is finding out whether
two different versions are in the same version branch in the version history.
Salzberg and Lomet [77] suggest using sequence numbers to identify data-
item versions. Their index structure assumes a small number of different
branches. Each data item is assigned a version and a branch identifier, and
the branch identifier is used to check whether a data item is an ancestor of
another data item. This check requires at most O(n) operations, where n
is the number of branches in the system. Landau et al. [50] use a history
tree with arrays that store change information in each node of the history
tree. Searches along a history branch first locate the queried version, and
then reconstruct the database state by combining the change sets of the
located node and its ancestor nodes. Landau et al. note that an index
structure such as the snapshot index of Tsotras and Kangelaris [90] (see
Section 3.5, p. 43) could be used to make the state reconstruction more
efficient.

2.3 Query Types

An important property of temporal databases is the different types of
queries that can be run on them. Ideally, the user should be able to de-
fine any bounds for the key and the transaction time of the sought data
item in a multiversion database. The corresponding ideal model allows
the user to specify the key, the transaction time, and the valid time in a
bitemporal database. All of these specified properties can be either inter-
vals or points in the corresponding dimension. Most temporal databases,
however, restrict the query types that are possible for the database. Tso-
tras et al. [89] define a notation for specifying the query types that can
be run on different kinds of databases. We use the notation for temporal
databases that was adapted by Salzberg and Tsotras in their temporal
database comparison [78]. The notation is key/valid/transaction, where
key means the key dimension, valid means the valid-time dimension, and
transaction means the transaction-time dimension. Each part of the query
type may be either point , range, ∗, or −. Here, point means that a single
point in the corresponding dimension is queried, range means that a range
of the appropriate dimension is queried, ∗ means that all values in the di-
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mension are to be included in the result, and − means that the dimension
does not apply to this database. Conceptually, ∗ is the same as defining
a range that covers all the values in the corresponding dimension.

On an ideal multiversion database, the database user should be able
to run any queries of the form x/−/x′, where x and x′ are both either
point , range, or ∗. Most multiversion databases, however, restrict the
query type to x/−/point [8, 45, 54, 58]. This means that queries may
target data items with different keys, but only within a single version
of the database at a time. In the terms of the consensus glossary [14],
the multiversion databases only allow queries that apply a transaction-
timeslice operator with an instant-type argument. In our dissertation, we
will assume the query type x/−/point as the basis of our multiversion
data model. In this model, the user always supplies a single version when
querying on the database. For discussion on the x/−/x′ query type for
the MVBT index structure (see Section 4.4), we direct the reader to the
article on query processing techniques by van den Bercken and Seeger [10].

2.4 Representing Multiversion Data

At this point, we can formally define a multiversion database:

Definition 2.6. A multiversion database is a transaction-time data-
base that is partially persistent and enables efficient x/−/point queries
on data items, where x is either point , range, or ∗. The transaction-time
instants of the data items in a multiversion database are called database
versions. The versions of the multiversion database are ordered based on
the commit-time ordering of the transactions. ◻

The versions of a multiversion database do not necessarily directly
map to any real-time instants. In fact, using consecutive integer values
for database versions has the advantage that the next version can al-
ways be easily determined. Users of the system, however, often wish to
query past states based on real-time instants. There are two intuitive ap-
proaches for overcoming this discrepancy. In the first approach, database
versions are increasing integer values, and a separate mapping between
versions and real time is maintained in the database system. In the other
approach, database versions are timestamps that are based on real time.
In this approach, given a version v1 that was used by transaction Tv1 ,
it is not possible to directly determine the next version v2 used by the
next transaction Tv2 , unless all the different versions are separately stored.
Salzberg and Lomet [77] suggest using the former approach. They use an
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array that maps the sequence numbers into real-time instants. Convert-
ing from database versions to real time is straightforward, as the array
can be directly accessed from the right offset. To convert back from real-
time instants to database versions, a binary search can be used, as the
real-time instants are also sorted in increasing order. We will assume that
this approach is used in the algorithms presented in this dissertation.

The ordering of the database versions must be based on the commit-
time ordering of transactions to ensure consistency of the data items be-
tween different versions. An ordering that is based on the starting time of
transactions, for example, guarantees consistency only if the transaction
commit order is forced to be the same as the starting order. Because
we do not wish to impose such a requirement, the data items created by
a transaction must receive the commit-time version of the transaction,
which may differ from the starting time of the transaction. Because the
commit-time version is not known at the beginning of the transaction, ac-
tive transactions must use a separate identifier to identify their updates.
Following Lomet et al. [55], we assume that a transaction T is assigned
a transaction identifier, denoted by id(T ), when it is created. When the
transaction T commits, a commit-time version, denoted by commit(T ), is
assigned to the transaction. The commit-time version is the version used
by the database to order the data items, and users of the database sys-
tem use it to query previous database states. In contrast, the transaction
identifiers are internal to the database system and not seen by the users.

The discrepancy between the transaction identifiers and the commit-
time versions is a common challenge in all multiversion databases. Often
the entries that represent the data items need to be initially stored with
the transaction identifier, and later on revisited to change the transaction
identifier into the commit-time version. A lazy timestamping scheme [55]
initially uses the transaction identifier to store the versions and lets the
transaction commit. Later, when the entries are accessed, the transaction
identifiers are changed to the commit-time version of the transaction. In
contrast, in an eager timestamping scheme [55], the temporary identifiers
are changed as soon as the transaction commits.

The data-update model adopted by most earlier proposals for index-
ing versioned data, including the model adopted for the multiversion
B+-tree (MVBT) of Becker et al. [8] and the multiversion access struc-
ture (MVAS) of Varman and Verma [92], assumes that each update action
creates a new version of the database, so that the versions are unique
across all versions of all data items. This model is not adequate for mod-
ern transactional applications, because data items within a single trans-
action should be assigned the same version. Following Salzberg et al. [76]
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and Lomet et al. [55], we assume a multi-action-transaction approach in
which all data-item versions created by a transaction T get the same
commit-time version commit(T ), unless the transaction updates a data
item more than once, in which case only the final data-item version gets
the commit-time version and remains in the database.

We will now formalize the notion of data items in a multiversion data-
base. Remember from Section 2.1 that the logical database consists of
tuples of the form (k,w), where k is the key of the data item, and w the
value associated with the item. Because the data items need an additional
version attribute—the life span #–v (Definition 2.1)—the data item model
used in snapshot databases is not sufficient for multiversion databases.

Definition 2.7. A multiversion data item in a multiversion database
is a tuple of the form (k, #–v ,w), where k and w correspond to the key and
value of the snapshot data items of the logical database, and #–v is the life
span of the multiversion data item. The life span #–v is either [v1,∞), if
the data item has not been deleted; or [v1, v2), if the data item has been
deleted. The version v1 is the commit-time version of the transaction that
inserted the data item, and version v2 is the commit-time version of the
transaction that deleted the data item. ◻

Definition 2.8. The updates performed by an active updating trans-
action T are called pending updates, and they are represented by tuples
of the form (k, id(T ), δ), where k is the key, id(T ) is the transaction iden-
tifier, and δ tells whether the update is an insertion or a deletion. In the
case of an insertion, δ = w, the value of the data item; and in the case of
a deletion, δ = �, a special marker value used to denote item deletion. ◻

In the logical database model, the pending updates created by a trans-
action T are incorporated into the database immediately when T com-
mits, either by inserting new data items or by updating the existing data
items. Depending on the implementation of the multiversion database,
the entries that are used to store the pending updates may exist for some
time after the transaction has committed. In this situation, the data-item
entries in the database may differ from the data items of the logical data-
base, and the database management system must be prepared to apply
the effects of the pending updates on the existing data items during the
execution of database queries.

With this definition, the logical data items can be identified by the
key-life-span pair (k, #–v ), or (k, [v1, v2)). However, we can also uniquely
identify a data item using only the creation time of the data item, that is,
the version v1. In this dissertation, we will use the pair (k, v1) to uniquely
identify a data item (k, [v1, v2),w). This is possible, because the life spans
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of data items with the same key k cannot overlap. We also define all other
pairs (k, v), with version v in the life span of the data item, v1 < v < v2, to
refer to the same data item. With this definition, users of the database
system may query a data item using any version that is covered by the
life span of the data item.

2.5 Read-Only Transactions

A fully concurrent multiversion database management system allows any
number of read-only and updating transactions to operate on the database
concurrently. As explained in Section 2.3, the read-only transactions must
explicitly specify which version they want to read; however, they are only
allowed to read versions that were already committed when the read-only
transaction began. In our model, database users must supply the queried
version at the beginning of the read-only transaction. All the queries of
the transaction then target the same version of the database. We call
this version, associated with transaction T , the snapshot time of T , and
denote it by snap(T ).

A read-only transaction T operating on a multiversion database may
contain the following actions:

• begin-read-only(version v): begins a new read-only transaction;
this action records the value snap(T ) ← v for the transaction. At
this point, it is also checked if v ≤ vcommit . If v > vcommit , the
transaction is either aborted or blocked until v ≤ vcommit .

• query(key k) → γ: retrieves the data item (k, [v1, v2),w) that
covers version snap(T ), that is, v1 ≤ snap(T ) < v2. Returns γ = w
if such a data item exists, otherwise returns γ = ∅.

• range-query(range [k1, k2)) → Γ: this action retrieves the set of
data items (ki, [v1i , v2i ),wi) with k1 ≤ ki < k2 and v1i ≤ snap(T ) < v2i .
Returns the set Γ of snapshot data items (ki,wi) representing the
multiversion data items alive at the queried version snap(T ).

• commit-read-only: commits the transaction T by removing it
from the system.

A read-only transaction that is aborted by the system may directly
be removed from the database system; no undo actions are necessary.
Read-only transactions in general do not involve any logging, because
they perform no updates to the database.

An example of a read-only transaction, operating on the example mul-
tiversion database shown in Figure 2.5, is given below:
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Figure 2.5. An example history of a multiversion database. The fig-
ure shows the contents of a database created by three transactions with
commit-time versions v1, v2, and v3. The arrow on the top shows the
latest committed version vcommit = v3.

1. begin-read-only(v2)
2. query(1) → w1

3. query(3) → w′

3

4. query(5) → ∅
5. range-query([0,10)) → {(1,w1), (2,w2), (3,w′

3), (4,w4)}
6. commit-read-only

2.6 Updating Transactions

All updating transactions operating on multiversion databases must al-
ways operate on live data items. Standard multiversion concurrency-
control algorithms are used to maintain data consistency, so that concur-
rent updating transactions do not update the same data items.

As discussed in Section 2.4, data items created by and existing data
items deleted by an updating transaction T must eventually receive the
commit-time version commit(T ) as the version associated with the data
item. For a write action, the new data item must have commit(T ) as its
creation time, and for a delete action, the deleted data item must have
commit(T ) as its deletion time (see Definitions 2.1 and 2.7).

Because the commit-time version of a transaction T is not known
during the execution of T , the updates of T are represented by pend-
ing updates (see Definition 2.8) that use the transaction identifier id(T )
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to separate the updates of different transaction. When the transaction T
commits, the database management system performs a release-version ac-
tion that incorporates the pending updates into the database, using the
commit-time version commit(T ). The committed version commit(T ) is
visible to other transactions after the release-version operation has com-
pleted.

An updating transaction T operating on a multiversion database may
contain the following actions:

• begin-update: begins a new updating transaction; this action
records the snapshot version snap(T ) ← vcommit , and creates the
transaction identifier id(T ) ← new identifier.

• query(key k) → γ: if the transaction T has already performed an
update action on the key k, so that a pending update (k, id(T ), δ)
exists, this action returns either γ = δ if the pending update was a
write action, or γ = ∅ if the pending update was a deletion (i.e.,
δ = �). If such a pending update does not exist, the action retrieves
the data item (k, [v1, v2),w) such that v1 ≤ snap(T ) < v2. If such
an item is found, the action returns γ = w; otherwise the action
returns γ = ∅.

• range-query(range [k1, k2)) → Γ: this action retrieves all the
pending updates (ki, id(T ), δi) and all data items (ki, [v1i , v2i ),wi)
such that k1 ≤ ki < k2 and v1i ≤ snap(T ) < v2i . For each key ki, if
a pending update for that key is found, the return set Γ contains
the data item (ki, δi), if δi ≠ �. For each key ki, such that there
is no pending update for that key but there is a data item with
key ki, the return set Γ contains the snapshot data item (ki,wi).
A pending update that is a deletion thus prevents the deleted key
from appearing in the result set.

• write(key k, data w): a forward-rolling action that either inserts a
pending update (k, id(T ),w) into the database, if no earlier pend-
ing update of the form (k, id(T ), δ) exists; or replaces the existing
pending update (k, id(T ), δ) with (k, id(T ),w). This action writes
a redo-undo log record that contains sufficient information for re-
doing or undoing the write action.

• delete(key k): this action logically deletes an existing data item.
If the multiversion database contains a pending update of the form
(k, id(T ), δ), δ ≠ �, this action replaces it with (k, id(T ),�). If
the database does not contain any pending update (k, id(T ), δ),
then this action is legal if the multiversion database contains a live
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data item (k, [v1,∞),w). In this case, the action inserts a pending
update (k, id(T ),�). The action finishes by writing a redo-undo log
record that contains sufficient information for redoing or undoing
the deletion.

• set-savepoint → p: creates a savepoint by generating a savepoint
identifier p and by returning it to the transaction.

• rollback-to-savepoint(savepoint p): rolls the transaction back to
a preset savepoint p. This action is followed by the undo-write
and undo-delete actions for the write and delete actions done
after setting savepoint p, executed in the reverse order.

• commit-update: commits an active updating transaction. This
action generates a commit-time version and assigns it to the trans-
action by setting commit(T ) ← new commit-time version; updates
the current-version counter vcommit ← commit(T ); and invokes the
release-version method to incorporate the pending updates into
the database.

• release-version: applies the pending updates performed by the
transaction T to the multiversion database. For each write action
described by a pending update (k, id(T ),w), the action retrieves
the live data item (k, [v1,∞),w′), if such an item exists. If such
a live data item exists, it is replaced by (k, [v1, commit(T )),w′).
Finally, this action inserts a data item (k, [commit(T ),∞),w) into
the multiversion database. For each delete action represented by a
pending update (k, id(T ),�), the action retrieves the live data item
(k, [v1,∞),w′), if such an item exists. If such an item is found,
this action replaces it by (k, [v1, commit(T )),w′). No such item is
necessarily found, if the transaction first inserted a new data item
and then deleted it. In this case, no action is taken for this pending
update. Finally, this action removes all the pending updates cre-
ated by T—i.e., pending updates of the form (k, id(T ), δ)—from
the database.

• abort: labels the updating transaction as aborted and starts the
backward-rolling phase. This action is followed by the undo-write
and undo-delete actions for all the not-yet-undone write and
delete actions of the forward-rolling phase, executed in reverse
order.

• undo-write(log record r): backward-rolling action that undoes
the write action logged with the log record r by either removing the
pending update (k, id(T ),w); or by replacing it with (k, id(T ), δ),
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if the corresponding write action replaced an earlier update by the
same transaction.

• undo-delete(log record r): backward-rolling action that undoes
the delete action logged with r by either removing the pending
update (k, id(T ),�); or by replacing it with (k, id(T ),w), if the
corresponding delete replaced an earlier update by the same trans-
action.

• finish-rollback: finishes the backward-rolling phase of an aborted
updating transaction.

An example of an updating transaction, operating on the example
database shown in Figure 2.5 in the previous section, is given below:

1. begin-update

2. query(1) → w′

1

3. range-query([0,10)) → {(1,w′

1), (2,w2), (3,w′

3), (4,w4), (5,w5)}
4. delete(4)
5. set-savepoint → p1

6. write(6,w6)
7. range-query([0,10)) → {(1,w′

1), (2,w2), (3,w′

3), (5,w5), (6,w6)}
8. rollback-to-savepoint(p1)
9. undo-write(r)

10. range-query([0,10)) → {(1,w′

1), (2,w2), (3,w′

3), (5,w5)}
11. commit-update

The form of transactions in multiversion databases is a generaliza-
tion of the recoverable snapshot database theory presented by Sippu and
Soisalon-Soininen [84], with the addition of setting and restoring save-
points as presented for B-trees in page-server database systems by Jaluta
et al. [41]. To abort and rollback an entire transaction in this model, it is
possible just to remove all the pending updates of the form (k, id(T ), δ)
from the database. Rolling back to a predefined savepoint, however, re-
quires that the undo actions are properly defined and that logging is used
so that it is possible to restore the earlier pending updates by the same
transaction that have been overwritten. The logging of the actions is
dependent on the implementation. Examples of how the actions can be
logged are given in Chapters 5 and 6.
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2.7 Concurrency Control

Transaction isolation in multiversion database systems can be maintained
by traditional concurrency-control algorithms, but there are multiversion
concurrency-control algorithms that are better suited to the task. These
algorithms take advantage of the different versions of the data items stored
in the database. Each data-item update creates a new version of the item,
and the different versions persist in the database system, for at least as
long as the transaction that created the data item is active. This is a re-
quirement for using multiversion concurrency-control algorithms in snap-
shot databases. Read-only transactions may thus run queries without ac-
quiring locks on keys, because writes by other transactions do not modify
the versions that are being read. Early multiversion concurrency-control
algorithms include multiversion timestamping, multiversion locking and
the multiversion mixed method. These are presented, for example, in an
article by Bernstein and Goodman [12] and in the textbook of Bernstein
et al. [13]. These algorithms generally assign unique timestamps to trans-
actions and store timestamp-identified copies of any modified data items.
These copies may be overwritten only after the transaction that created
them has committed.

The multiversion timestamping method, or multiversion timestamp or-
dering, was originally presented by Reed in his PhD thesis [75]. This
concurrency-control algorithm uses only item timestamps to control ac-
cess to items; the transactions take no locks on keys. Modifications to
data items create new versions of the items, and each transaction reads
the most recent version that precedes the transaction’s own timestamp.
Here we assume that the transaction identifiers are based on the starting
time of the transaction, and that the timestamp of a transaction T is thus
id(T ). The data-item timestamps can be used to ensure that the trans-
actions operate in a serializable isolation level. When a transaction Ti
issues a write of value w to key k, the following is considered: if there is
a transaction Tj with a larger timestamp id(Tj) > id(Ti) that has already
read the earlier value w′ of key k, then the write of Ti is not allowed,
and Ti is aborted, or the write action is simply denied. Additionally,
the commit of transaction Ti must be delayed until all transactions Tk
that have written data that Ti has read have committed. If any of the
transactions Tk aborts, Ti must also be aborted. By denying such writes-
after-reads, the multiversion timestamping method can be proven to form
serializable histories [12, 13].

The multiversion locking method is another approach that uses lock-
ing, and not timestamps, to manage concurrent access to the database.
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It is a multiversion method, however, because more than one version of
data items is stored. The multiversion locking method marks item modi-
fications first as uncertified, and later on tries to certify all of them. The
transaction may commit only if the certification is successful. Bernstein
and Goodman [12] discuss a general algorithm for multiversion locking;
whereas in their textbook [13] they describe the two-version two-phase
locking algorithm (2V2PL). In 2V2PL, transactions acquire read and
write locks as in two-phase locking, but the write locks only conflict with
each other, not with read locks. For each data item, a single extra ver-
sion is kept stored in the database (the uncertified update; there can
be no more than two uncertified updates at a time because of the write
locks). When a transaction commits, it tries to upgrade all of its write
locks into certify locks. The certify locks are defined to conflict with all
other lock types, including read locks. If other transactions thus hold
any read locks on any keys that the committing transaction has updated,
the commit operation is delayed until the conflicting transaction commits
and releases the locks. This can naturally lead to deadlocks, which must
then be detected and resolved by aborting one of the transactions. The
transactions executing under multiversion locking algorithms also form
serializable histories.

The multiversion mixed method uses both timestamping and locking
to control the actions of transactions. In short, read-only transactions
are controlled with multiversion timestamping, and updating transactions
with multiversion locking. That is, read-only transactions are assigned a
timestamp that is smaller than the timestamp of any active uncertified
transaction. The read-only transactions may then directly read the lat-
est version preceding their assigned timestamps, without needing to lock
any keys. The updating transactions, on the other hand, lock updated
keys like in the multiversion locking approach. This time, however, the
data items are timestamped. As noticed in Section 2.4, the items must
be timestamped according to their commit-time ordering. In the multi-
version mixed method, the timestamps are assigned when the transaction
commits (after the updates have been verified). Bernstein et al. [13] also
suggest replacing the timestamps by commit lists so that the items do
not need to be revisited. However, this approach requires tracking and
passing around commit lists that tell which transactions have committed.

A more recent multiversion concurrency-control algorithm is the snap-
shot isolation algorithm, or SI [11, 19, 28], which is an extension of the
multiversion mixed method. A transaction T executing under snapshot
isolation obtains a timestamp at the beginning of the transaction, or at
any time before the first read (or write) action. The transaction can only
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read data items with timestamps that precede the start timestamp of the
transaction. When the transaction T commits, it gets a commit time-
stamp that is larger than any start timestamp or commit timestamp in
the system. The updates made by the transaction must receive this com-
mit timestamp, as noted before. The transaction will successfully commit
only if no other transaction T ′ with snap(T ) < commit(T ′) < commit(T )
wrote data that T also wrote. If there is such a transaction T ′, then
T must abort. This principle is called first-committer-wins. The original
definition by Berenson et al. [11] notes that snapshot isolation precludes
all the phenomena defined by ANSI SQL-92 [3], but is still weaker than
some of the isolation levels defined by those phenomena. SI allows histo-
ries such as

b1r1[x]r1[y]b2r2[x]r2[y]w2[x]c2w1[y]c1.
The history is accepted in SI, because the write sets of T1 and T2 are
disjoint, but it is not serializable, because r1[x] is an unrepeatable read.
This history is an example of a write skew which happens when trans-
action T1 first reads x and y, which are consistent with a constraint C,
and then T2 reads x and y, writes x, and commits. If T1 now writes y,
the constraint C may be violated. Regardless of the non-serializability
of snapshot isolation, it is widely used, and Oracle’s implementation of
the serializable isolation level is based on snapshot isolation [19, 28, 68].
Oracle thus needs to store the history of recent data item versions in data
pages to be able to apply snapshot isolation.

Snapshot isolation can be made serializable, however. Fekete et al. [28]
show how to analyze applications and to modify them so that they are
equivalent but preclude the write skew anomalies. One such technique is
to materialize the conflicts, i.e., to write the constraints into the database
relation, thus enforcing write-write conflicts into the transactions. Alo-
mari et al. [2] show that the modified applications may be less efficient,
but the performance loss is negligible if the correct method is used. Cahill
et al. [19] extend the snapshot isolation algorithm by adding book-keeping
code to detect situations where non-serializable executions could occur. If
such a situation is found, one of the transactions is aborted. This method
guarantees serializability for all transactions. Cahill et al. also present
test results that show that the performance of the serializable snapshot
isolation algorithm is comparable to snapshot isolation, and always better
than strict two-phase locking.

The definition of snapshot isolation [11] does not include any sugges-
tions on how the isolation level should be enforced. Standard locking
is inadequate, because a transaction T must abort if it tries to update a
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data item that has been updated by an overlapping but already committed
transaction T ′. Alomari et al. [2] describe how the PostgreSQL database
implements snapshot isolation by having each transaction take exclusive
locks on any modified data items; and by aborting any transaction T that
tries to modify a data item for which the latest version (k, [v1, v2),w) has
been modified after transaction T begun, so that v1 > snap(T ).

We do not presuppose that snapshot isolation be used in connection
with the database structures and algorithms presented in this disserta-
tion. However, we do assume that such a multiversion concurrency-control
algorithm is used that allows read-only transactions to operate without
blocking updating transactions and vice versa. We will use the snapshot
isolation algorithm in our examples.

2.8 Structure-Modification Operations

When a database page becomes filled with data items, it needs to be split
into two separate pages using a page-split operation. Similarly, when
enough data items in a page have been marked as deleted, the page needs
to be merged with a sibling page using a page-merge operation to main-
tain an appropriate minimum number of live data items in each page.
These operations are called structure-modification operations , or SMOs.
In snapshot database theory, the algorithms of the ARIES family use
nested top actions [64, 66] when executing structure-modification opera-
tions. When a structure-modification operation begins, the log sequence
number (LSN) of the last action performed prior to the SMO is recorded.
All the individual operations required by the SMO are logged using nested
top actions. When the SMO finishes, the Undo-Next-LSN [64] of the last
nested top action is set to the LSN value recorded at the beginning of the
SMO, so that the action chain determined by the Undo-Next-LSN values
skips the operations performed by the SMO, if the SMO has finished. The
effect of this technique is that it breaks the standard backward chaining
of log records, so that partial and total rollbacks skip the nested top ac-
tions. The SMOs are not undone even if the transaction that triggered
the SMO aborts and is rolled back.

There are, however, some challenges with nested top actions. They
often require tree latches or special structure-modification bits to be set
on the database pages so that concurrent transactions can notice that a
structure-modification operation is ongoing. They may also be undone
if a system crash occurs before all the required nested top actions have
finished. Jaluta et al. have proposed a more straightforward method for
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performing structure-modification operations for database index struc-
tures [39–41]. In their approach, each structure-modification operation
targets a single page of the index structure, requiring modifications to
be made to at most three pages at two adjacent levels (for the B+-tree
index): one parent page, and two sibling child pages. This also means
that at most three different pages need to be latched at a time (again,
for the B+-tree; different index structures may require different number
of pages to be latched at a time). If an SMO at a lower level causes an
SMO in an upper level, the SMO at the upper level is applied before the
SMO at the lower level.

Each structure-modification operation is logged using a single redo-
only log record. In contrast to nested top actions, interrupted SMOs are
never undone in this approach, and the index structure remains consistent
after each SMO, so that each SMO transforms a structurally consistent
and balanced index tree into another structurally consistent and balanced
index tree. The log records must contain sufficient information of all the
entries moved or copied between pages, so that the effect of the operation
can be redone on any single page involved in the operation, as is required
by the ARIES algorithm [66]. This approach does not require any special
structure-modification bits or tree latches for applying the modification.
We will use this approach to apply structure-modification operations to
the index structures discussed in this dissertation.
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Multiversion Index Structures

We have now discussed the theory behind temporal databases, concentrat-
ing mostly on multiversion databases. In this chapter, we describe some of
the index structures used in multiversion databases. We begin the chap-
ter by defining a few general properties of multiversion index structures in
Section 3.1. In Section 3.2, we will demonstrate that a single-version in-
dex is not an efficient structure for indexing multiversion data. To be able
to properly determine the efficiency of multiversion index structures, Sec-
tion 3.3 defines what we mean by an optimal multiversion index structure,
and Section 3.4 lists common design ideas used in efficient multiversion
indexes. In Section 3.5, we describe some of the early multiversion index
structures. For a comprehensive presentation and comparison of differ-
ent multiversion access methods, the reader is referred to Salzberg and
Tsotras [78], and Özsoyoǧlu and Snodgrass [94]. The rest of this chapter
is dedicated to different kinds of structures that have been used to index
multiversion data or are otherwise related: spatial indexes (Section 3.6),
hashing structures (Section 3.7), version-control systems (Section 3.8),
and other structures (Section 3.9).

3.1 Properties of Multiversion Indexes

To begin, let us define what we mean by a multiversion index structure:

Definition 3.1. A multiversion index structure is a transaction-time
index that is partially persistent and enables efficient x/−/point queries
on the data items, where x is either point , range, or ∗. The index is a
collection of nodes that forms a tree or a directed acyclic graph (DAG).
The nodes of the graph are fixed-size database pages. The graph contains
one or possibly many root pages, which serve as starting points for search
operations. Pages that have child pages are called index pages or parent
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pages, and pages that do not have child pages are called leaf pages. Each
page contains entries that represent either data items (called data entries,
see Definition 2.7) or routers to child pages (called index entries). Page
capacity B tells how many entries fit into the page. The capacity is
dictated by the entry format and the page size, but for the simplicity
of the theoretical discussion, we assume that the page capacity B is the
same for all index and leaf pages. The data entries stored in the index
may contain either the actual data stored with the key (the row in the
relation), in the case of a primary or sparse index ; or a pointer to a
separate storage location, in the case of a secondary or dense index. ◻

The multiversion index structure defines the way the data items are
stored and accessed. Similar to the B+-tree, most often the index pages of
a multiversion index contain only index entries, and the leaf pages contain
only data entries. Searches in a multiversion index follow the same logic
as searches in a single-version index structure: each node has a number
of child nodes, and each child page covers a more restricted area of the
search space. The search spaces of sibling pages usually do not overlap,
but there are exceptions. In a multiversion index, the search space is the
key-version space. Each page thus covers a region in key-version space.
If the multiversion index contains a single root page, then that root page
covers the entire key-version space. A child page’s search-space region
overlaps with the parent page’s region, and often the child page’s region
is a subset of the parent page’s region. A key k that is part of version v
(alive at version v) is located at the leaf page whose key-version region
covers the key-version coordinate (k, v).

In multiversion index structures, the most important property to op-
timize is the number of pages that an action needs to read or write to
perform an action, because I/O operations on disk storage are still the
most significant bottleneck in most database applications [44]. A good
index structure requires a minimal number of page accesses for its actions.
If a search operation on a database index requires access to m pages to
locate key k, then m is normally logarithmic in the number of data items
indexed by the structure, if the index is a tree structure. For analyzing
the performance of index structures, we define the cost of an action:

Definition 3.2. The cost of an action or an operation is the number
of index-structure pages the action needs to access (read and/or write).
In the case of a sparse index, this includes all the pages the actions need
to access. In the case of a dense index, this includes only the pages of
the index structure itself, and not the data pages that may need to be
accessed additionally for each data item. ◻
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3.2 Versioned B+-tree

The B-tree [5, 6, 23] is a widely used search tree structure that is optimized
for use as a database index structure. A single node of the B-tree is stored
in a single database page. Each database page is designed to fit in a single
disk block (or a fixed number of consecutive blocks), so that reading
and writing database pages is as efficient as possible with the underlying
storage medium. Because disk block sizes range from 4 KiB to 64 KiB [81],
the nodes of the B-tree have a huge number of children, ranging from
hundreds to even thousands. For example, if a 4 KiB index page contains
index entries that consist of a four-byte key separator and a four-byte
child page identifier, the page can contain in the excess of 500 entries; an
8 KiB page can contain a thousand index entries, and so on. The fan-out
of a B-tree is therefore high, and the trees tend to be very low. There are
typically only three to five pages on a path from the root to a leaf page
in even a very large database system.

The most widely used variant of the B-tree is the B+-tree, which stores
data entries only in leaf nodes. The index nodes of a B+-tree thus contain
only index entries. The leaf pages of a B+-tree index are at level one, and
index pages are at consecutively higher levels. The height of the B+-tree
is the level of its root page1. With this convention, an empty B+-tree has
a height of zero (no pages allocated2); a single leaf-page root page forms
a B+-tree of height one; and a B+-tree with n levels of index pages and
a single level of leaf pages forms a B+-tree of height n + 1. A standard
B+-tree index stores entries of the form (k,w) in its leaf pages and entries
of the form (k, p) in its index pages, where k is the data item key, w is
the data value, and p is the page identifier of a child page that resides at
the next lower level. The key k used in the index entries is also called a
router that directs the search to the correct child page. The data value
w is either the value itself, in the case of a sparse index; or a pointer to
where the data is stored (a record identifier of the data), in the case of
a dense index. The entries are ordered by the key k. An update on a
data item in a standard B+-tree is performed by physically deleting the
old entry from the index, and by inserting a new entry to replace the old
one. No version history is recorded in a B+-tree. However, with a slight
modification to the entry structure we can record the history of data-item
changes in the B+-tree index.

1There are overlapping definitions for tree height and page levels; we adopt the
convention used by Bayer [5] because it seems most natural.

2For practical efficiency reasons, an empty root page might need be kept allocated
for an empty B+-tree index.
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As discussed in Section 2.4, multiversion data items are tuples of the
form (k, #–v ,w), where #–v is the life span of the data item. Furthermore,
the data items can be uniquely identified by the key-version pair (k, v1),
when #–v = [v1, v2). An update to a database index is logically either a key
insertion or update (a write action), or a key deletion (a delete action);
recall the update model from Section 2.6. The multiversion history can
thus be stored in a B+-tree index if we simply change the data entry
format to (k, v1,w) for a write action and (k, v2,�) for an item deletion.
The version v1 represents the commit-time version of the transaction that
inserted the new value w, and v2 represents the commit-time version of
the transaction that performed the deletion. In this convention, each
deleted multiversion data item (i.e., a multiversion data item with a life
span #–v = [v1, v2) ∶ v2 ≠ ∞) is represented by two entries: one marking the
insertion of the multiversion data item, and one the deletion or updation
of the item. We call this extended B+-tree structure the versioned B+-tree,
or VBT for short. The entries in a VBT are ordered first by the keys,
and then by the versions, so that (k, v,w) < (k′, v′,w′) if either k < k′ or
k = k′ ∧ v < v′. This defines a total ordering, because entries are uniquely
identified by the pair (k, v), so that no two updates can have the same
key and version.

Because the entries are now ordered by the key-version pairs (k, v),
the index entries in index pages need to reflect this. The index entries of a
VBT are therefore of the form (k, v, p), where p is the identifier of a child
page. As with a B+-tree, the (k, v) pairs in index entries are separator
values that are used to direct searches. If an index page contains n entries
(ki, vi, pi), with i ∈ {1,2, . . . , n}, and (kj, vj) ≤ (k, v) < (kj+1, vj+1), then
the page identifier pj is the identifier of the child page whose key-version
range contains the entry (k, v). We define (k, v) ≤ (k′, v′) if either (k, v) <
(k′, v′) or k = k′ ∧ v = v′. The key-version pair (ki, vi) in an index entry
thus defines a lower limit for key-version pairs in the child page pointed
to by the index entry, and the key-version pair (ki+1, vi+1) in the next
entry defines the upper limit. This could as well be defined the other
way around, so that the key-version separator value stored with an index
entry defines the upper limit for the page pointed to by that entry; and
the separator value stored in the previous entry defines the lower limit.

Searching for a single key k at version v in the VBT is performed by
locating the entry (k, v′, δ) with the largest v′ such that v′ ≤ v. If no such
entry is found, or if δ = �, then the query should return ∅ to indicate that
no entry for the given key at the given version exists in the database.
Otherwise, the query returns the value δ. Because all the versions of
the data items are stored in the same index tree, the cost of a single-key
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retrieval, write, or delete action is Θ(logBm) pages, where m is the total
number of entries stored in the VBT. This holds regardless of the version
that is queried. Let us denote by mv the number of data items that are
alive at version v. Note that mv might be significantly smaller than m,
if the database history contains many deletions. Early versions may also
contain very few live data items. However, because even large B+-trees
tend to be low in height, this access cost is usually acceptable.

The problematic operation in the VBT is the range query operation.
An efficient range query in a single-version B+-tree index needs to process
Θ(logBm + r/B) B+-tree index pages, where m is the number of entries
stored in the index, and r is the number of data items in the queried
range. This is because data item entries that are next to each other in
the key dimension are stored next to each other in the leaf pages and
each leaf page contains Θ(B) entries. B+-trees can generally guarantee
a minimum number of entries per page, such as B/3, for example. Most
of the B+-tree implementations have the leaf-page level siblings linked to
enhance range queries, so the range can be scanned without backtracking
to index pages once the other end of the range is located. However, even
backtracking the search through index pages to locate all the leaf pages
requires access to only Θ(r/B) pages, since the number of leaf pages is
asymptotically much higher than the number of index pages required to
index them (see proof below).

Theorem 3.1. Locating the r entries in a queried range [k1, k2) in a
B+-tree index requires access to Θ(logBm + r/B) B+-tree pages, where r
is the number of entries in the queried range [k1, k2), and m is the number
of entries stored in the index structure.

Proof. Because each index page in a B+-tree has a fan-out of Θ(B),
and all the root-to-leaf paths are of the same length, the height of the
B+-tree index is Θ(logBm). This explains the logarithmic part logBm of
the costs, as the search tree must be traversed from the root to the correct
leaf node to locate key k1. The r entries returned by the query require
Θ(r/B) pages to store them, which gives the second part of the cost. If
the index has direct links between sibling pages (like the Blink-tree), then
the pages can be directly traversed, and the proof is complete. If there are
no sibling links, the leaf pages must be located by backtracking through
the index pages, resulting in additional page accesses. The number of
index pages required to locate the leaf pages is however asymptotically
smaller than the number of leaf pages indexed by the index pages; with
the possible exception of an extra root-to-leaf traversal of the entire index.
This result is proven by, for example, Brown and Tarjan [17] in a more
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general form. We formulate a short proof for this result here. In each
index page at level l + 1 (except for the leftmost and rightmost index
pages), the search will locate and use at least Θ(B) pointers to pages at
level l. Thus, to locate all n = Θ(r/B) leaf pages, at most Θ(logB n) pages
at level two need to be processed. Similarly, only Θ(logB logB n) pages
at level three need to be processed. In general, exponentially fewer pages
are required at each higher level, and the sum of all the required pages
is bounded from the above by the power series of 1/2 times n, which in
turn converges to 2n = Θ(n) = Θ(r/B). Furthermore, while the leftmost
index pages at each level might contain fewer than Θ(B) entries that are
relevant to the query (and similarly for the rightmost index pages), if we
reserve two extra pages for each level, these are accounted for. Because the
initial traversal from the root page to the leftmost leaf page has already
added an asymptotic cost of one page for each level, these extra pages
reserved for each level do not add to the asymptotic cost of the range
query. ◻

Corollary 3.2. In the VBT, the entries are not clustered next to each
other by the key values—the different versions of these entries are in the
way. The only guaranteed cost limit for a key-range query of the range
[k1, k2) in a VBT index is of the form Θ(logBm+(n×mk)/B), where m is
the number of entries in the entire index, n is the number of versions in the
database history, and mk is the maximum possible amount of discrete keys
in the queried range (for databases that store integer keys, mk = k2−k1). ◻

Corollary 3.2 implies that in the worst case, there are n different ver-
sions of each data item in the range, and they must all be scanned to find
the relevant entries. Note that this does not have anything to do with
the size of the result set of the query—none of the records in the range
need to be alive at the queried version, resulting in an empty answer set
to the query. Thus, the VBT is not sufficient for use as a multipurpose
multiversion database index structure.

3.3 Asymptotic Optimality

As we saw in the previous section, the B+-tree index is not efficient when
used as a multiversion index structure. To properly categorize the effi-
ciency of index structures, let us now define what the action costs of an
optimal index structure are. When designing a dynamic index structure
where item search is based on the comparison of key values, and the items
are ordered, the minimum number of key comparisons required for the
search is Θ(log2m), when the structure contains m entries. This can be
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achieved, for example, with a binary search tree. Similarly, the minimum
number of key comparisons for locating a range of entries is Θ(log2m+r),
if we do not assume that the r entries of the queried range are stored in
consecutive storage locations so that it would suffice to locate only the
storage locations of the range endpoints.

As we have shown in the previous section, the B+-tree is an optimal
snapshot index structure that achieves these bounds, although in the case
of database tree structures, we are calculating the number of page accesses
instead of item value comparisons. If we wish to consider the number
of key value comparisons in a B+-tree, note that a single-key search in a
B+-tree index requires access to Θ(logBm) pages, as shown in Section 3.2,
where B is the page capacity and m is the number of entries stored in the
index. Because each page contains at most B entries, at most Θ(log2B)
key value comparisons need to be performed for each page if the entries
of the page are ordered. The total number of key comparisons is thus
Θ(log2B logBm). Once the page capacity B is fixed, the term log2B
becomes a constant, and can be omitted from the asymptotic analysis.

Based on the discussion above, we formally define the requirement for
optimality in a multiversion database index structure:

Definition 3.3. A general-purpose multiversion database index struc-
ture is optimal, if the action costs are logarithmically dependent in the
number of data items alive at the queried version. More specifically, the
corresponding action costs must be at most c1 = O(logBmv) pages of the
index structure for single-key actions and c2 = O(logBmv + r/B) pages of
the index structure for the range-query action in the worst case, where
mv is the number of data items that are alive at the queried version v. ◻

An optimal multiversion index structure must be as efficient as an
optimal single-version index structure that only indexes the data items
alive at the queried version. The definition presented here is the same as
the definition of Becker et al. [7, 8], and stricter than the one assumed
by Varman and Verma [92], in which the logarithms are taken from the
total number of updates performed to the index structure, instead of the
total number of entries that are alive at the queried version.

In practice, the index structure must also be able to index multiple
data items that receive the same version, corresponding to multiple data
items inserted or deleted by the same transaction. We naturally also re-
quire that the structural consistency of the index must be preserved in
the presence of multiple updating transactions. The logical key-level con-
sistency of the index, and of the set of data items themselves, is assumed
to be preserved by using an appropriate multiversion concurrency-control
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algorithm, such as snapshot isolation [11] (see Section 2.7). These are
practical requirements that are necessary for the index to be useful in a
modern multi-user database environment.

3.4 Common Multiversion Index Design

It is apparent that a specifically tailored structure is required for efficiently
storing the history of data items. A common design in newer multiversion
index structures is that each database page covers a region in key-version
space, and that these regions at any level of the index do not overlap.
The root page covers the entire key-version space, and each page lower
in the index structure covers a smaller region. These multiversion index
structures are often directed acyclic graphs, rather than trees, and child
pages may have more than one parent page.

An example of the difference between a single-version B+-tree index
and a common multiversion index structure design is shown in Figure 3.1.
The figure also shows the key ranges (or regions of key-version space)
covered by each page, and an example of the search tree of a single version
is shown for the multiversion index structure. In this multiversion index
structure, there is a unique search tree for each version of the database.
This concept is defined formally in Definition 4.2 in page 54. The search
trees of different versions of the database may share pages, as shown by
the leaf page p5 in the figure. The page p5 is shared by all the search trees,
as indicated by its life span [−∞,∞), and therefore it also has multiple
parents so that it can be reached from each search tree.

Because the pages of a multiversion index structure cover regions in
key-version space instead of just key ranges, they can be split either by
keys or by versions. These operations are generally called key split and
version split, respectively. The main challenge in multiversion index struc-
tures is to design these operations so that the data is distributed in such
a way that the operations remain efficient in the presence of varying his-
tories of user actions.

It is also important to merge pages to preserve data locality after key
deletions. It is true that entries are generally not physically removed from
a multiversion index, because the history information must be preserved.
However, once a page p is version-split into pages p′ and p′′ using a ver-
sion v as the separating version, so that the entries in p′ have creation
times (Definition 2.1) that precede the creation times in p′′, the entries
that have been logically deleted before v need not be present in page p′′,
because the items represented by those entries are not alive at the ver-
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Figure 3.1. Comparison of single-version and multiversion indexes.

sions following v. For an example, suppose that a page in a multiversion
database holds an entry created by a transaction with commit-time ver-
sion v1, and that this entry is later deleted by a transaction with version
v2. Page p is now version-split into a historical page p′, and a current
page p′′.3 Now, page p′ must hold the information of the insertion at
v1 and the deletion at v2, but the new current page p′′ does not need
to contain any traces of the key k, because k is not alive at any version
v ≥ v3 unless explicitly re-inserted into the database. Key deletions may
thus physically remove entries from new copies of old pages, and in this
way the number of entries in the new pages may fall below the acceptable
minimum so that a page merge is required.

It may seem that the requirement for merging pages is critical only
in the asymptotic sense, and not in practice, as the pages can still be
version-split and reused for storing new data items. The fact is, however,
that unless pages are merged, the key ranges they cover can only shrink,

3Depending on the index structure, the physical page p will be reused as either p′

or p′′.
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and never expand. Because the search tree of the current version must
cover the entire key dimension, this means that the search tree of the
current version cannot shrink unless pages are merged.

Imagine now a warehouse inventory application for keeping track of
the goods stored in the warehouse. The application creates a data item for
each product stored in the warehouse. Each item is assigned an increasing
integer identifier and stored in a multiversion database, indexed by the
identifier. As the database fills, pages are key-split and thus the leaf pages
cover key-ranges that are close to the lower end of the integer key space.
When the products are taken out of the warehouse, the data items are
deleted. New items have increasing identifiers and are thus inserted to
the leaf pages in the higher end of the key space. Eventually, all the
pages with lower key ranges contain only deleted entries, and all the live
entries are clustered in the leaf pages with higher key ranges. Suppose
that a reporting transaction performs a range query for the entire key
range of the database. The range query must scan through all the pages
at the lower end of the key range that contain only deleted entries before
it reaches the pages where the live entries are stored. The performance
of the reporting process will only get worse as the database accumulates
more historical entries, even if the database contains the same number of
live entries. As shown here, it is important to guarantee that all pages
that are part of the search tree of a version v contain enough entries
that are alive at version v so that range queries that target version v are
efficient.

Merging pages can lead to a tree height decrease in a single-version
index structure. In multiversion structures, the height of the entire index
cannot decrease, because the heights of the version trees of historical
versions must remain as they are. The search trees of different versions
can, however, be of varying heights. The MVBT [7, 8], for example,
has a separate structure called the root∗ (see Definition 3.4 below) that
stores the page identifiers of the root pages of different versions. This is
illustrated in Figure 3.2. The TSB-tree [58], in contrast, has a single root
and thus all the search trees of different versions are of the same height.

Definition 3.4. A root∗ is an auxiliary structure that can be used
to efficiently retrieve the page identifiers of the root pages of different
versions. ◻
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Figure 3.2. Search trees of different heights. Search trees of different
versions in a multiversion index can have different heights.

3.5 Early Multiversion Index Structures

The idea of storing historical versions in the database is not new. Over-
mars discussed general methods for making data structures persistent in
1981 [69, 70], and the classification of the time concepts ranges back to the
mid-1980s [62, 85, 86]. The earliest specifications used the term rollback
database when talking of multiversion databases (that is, transaction-time
databases); historical database when discussing valid-time databases; and
temporal databases when talking of bitemporal databases (see Section 2.2
for current definitions of the time concepts). This section reviews some
of the early index structures and the design ideas behind them.

One of the earliest approaches to data persistence is reverse chain-
ing that is used to chain the history of the data entries together. Lum
et al. [62] have described an index structure that uses a current version
tree to index the current version, and a historical tree that is used to
index historical versions. Both trees contain pointers to a reverse-chained
linked list of entry values, ordered by the update times, so that the latest
version is at the start of the list. While both of these index structures
may be efficient (optimal) B-trees, the number of updates on a data item
directly affects the length of the version-history chain, and thus the query
actions for previous versions on this index structure can have very high
costs, especially for key-range queries.

Another technique used in early multiversion index structures is path
copying [80, 87]. This method achieves persistence by creating copies of
changed nodes, so that the old nodes are left untouched. Because the
new nodes need to be attached to parent nodes, and the original parent
nodes cannot be changed, the entire path from the changed node up to the
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root node needs to be copied. This method therefore effectively creates
a new path that can be used for current-version queries and retains the
old path for historical queries. Sarnak and Tarjan [80] describe how to
make red-black trees [4, 33] persistent by creating a new copy of the path
along which a change has occurred. Search trees of different versions
share common subtrees, and differ only on the single copied path. As
the entire path is copied, a new root node is created for each update.
Soisalon-Soininen and Widmayer also use path copying with AVL-trees
to make the tree structure recoverable [87].

Because there are multiple roots, all the roots of different versions
must be stored in some structure. Sarnak and Tarjan [80] use an array
of page identifiers, ordered by the creation time of the corresponding
pages. This array is essentially a root∗ structure of Definition 3.4. While
this method is efficient for binary search trees, with a logarithmic cost
of Θ(log2mv) pages for both updates and query operations, where mv

denotes the number of entries that are alive at version v, the method
is not feasible for disk storage, because only a single entry is stored per
node and each update requires Θ(log2mv) space for the new copied path.
Sarnak and Tarjan further enhance the space consumption of their method
by allowing nodes to grow fat. A fat node is a node that can contain an
arbitrary number of entries; in this case, an arbitrary number of left
and right pointers in the binary search tree, corresponding to paths in
different versions. The fat node can be implemented, for example, by
chaining together a list of database pages. Path copying for each update
can thus be avoided. However, the enhanced structure still stores only a
single data-item entry in each node, so the approach remains unsuitable
as a disk-based access method.

Shoshani and Kawagoe [82] have presented a more general framework
for indexing data with different types of time sequences. A time sequence
is the collection of changes associated with a data item. In our multiver-
sion data item model, a data item has a life span during which it is alive,
and any change to the data item creates a new data item (see Section 2.4).
In contrast, a time sequence records all the updates that target a single
key. A data item in Shoshani’s and Kawagoe’s framework is represented
by a tuple (k,S), where S = {(vi,wi) ∶ i ∈ {0,1, . . . , n − 1}} is the time se-
quence of the data item. An individual tuple (vi,wi) of the time sequence
denotes that the data item with the key k was assigned the value wi at
version vi.

Shoshani’s and Kawagoe’s framework furthermore identifies time se-
quences with different update patterns. Item costs in a grocery store data-
base, for example, have continuous, irregularly and step-wisely changing

40



3.5 Early Multiversion Index Structures

values, while the number of items sold is a discrete value that is mea-
sured at regular intervals. The dynamic index structures that Shoshani
and Kawagoe propose assigns cells or database pages to data keys (sur-
rogates). As the pages fill up, new pages are linked to form a chain of
pages. These pages are further indexed into an ordered list of pointers so
that the entire structure is doubly indexed—first by the key attribute to
locate the secondary index and then by the version to locate the correct
page. Finally, the data page itself must be searched for the correct ver-
sion. Single-key operations in these index structures have a logarithmic
cost, but the constant overhead is high as there are multiple indexes that
have to be traversed. Furthermore, the data items are not clustered on
the key attribute, and key-range queries are thus inefficient.

Easton’s write-once balanced tree (WOBT, [25]) is a multiversion index
structure that stores multiple versions of data items on indelible storage.
The structure can therefore be used with WORM (write once, read many)
media. This index structure is based on the B+-tree, but rather than over-
writing old data, new versions are written next to the old ones. When
pages fill up with different versions, a new copy is created and possibly
split into two separate pages. The old one, however, remains as it was.
Root pages of the WOBT are forward-chained, so that the most recent
root page can be located by starting a search from the first root (first
page on the database index) when the structure is loaded from the disk
during database startup. The latest root, and possibly the other roots as
well, are then cached in main memory for fast access. The WOBT is not
very space-efficient, because no data can be overwritten. It is, however,
an important structure, because the more recent TSB-tree (described in
Section 4.2) is based on it, and the TSB-tree in turn is used in the mul-
tiversion database engine that Microsoft is developing on top of the SQL
Server (see Section 4.3).

Driscoll et al. have discussed a more general way of making main-
memory data structures either partially or fully persistent [24]. Their
solution to partial persistence is based on the ideas presented by Over-
mars [69, 70]. They suggest using either fat nodes or node copying to
make binary search trees persistent. In the fat node method, the binary
tree nodes can grow arbitrarily large. In the node copying method, the
nodes may contain a fixed number of left and right pointers to child nodes.
The pointers have a version attached to them that is used to select the
correct pointer to traverse. When a node fills, a new copy of it is created.
Only the most recent pointers are copied to the new node, and a pointer
to the new node is attached to the parent. The old node is thus left in
place and can be used for historical queries. While Driscoll et al. designed
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the algorithms for in-memory structures, the node copying approach has
been adapted for use with disk-based temporal index structures. The
more recent index structures, such as the TBS-tree, the MVBT, and the
MVAS (see Chapter 4), all employ page-copying methods such as these to
organize the database pages. For discussion on the fully persistent index
structures, refer to the article by Driscoll et al. [24].

The time index is yet another early multiversion index structure that
was proposed by Elmasri et al. [26, 27]. The authors had noted that the
other index structures chained the versions of data items separately, and
thus did not cluster the data items of a given version next to each other,
and the time index was designed to correct this. Elmasri et al. talk about
valid time [26, 27], but they make the assumption that changes occur
in an increasing time order, and that changes to previous times do not
happen, so the time index is more properly classified as a transaction-time
index structure (recall the definition from Section 2.2, p. 11).

The time index is based on the B+-tree, but it is organized by the
data-item versions (transaction-time instants), instead of data-item keys.
Each leaf page holds a range of database versions. The leaf-page entries
are tuples of the form (vi, bi), where vi is the version of the entry and
bi a pointer to a bucket (i.e., database page or a collection of pages)
containing information about the entries of that version. To save space,
only the bucket identified by b0 contains a full snapshot of entries; the
rest of the buckets (identified by bi, i ≠ 0) store updates. Elmasri et al.
enhance this index by various techniques (such as separating incremental
and decremental buckets [26]), and Kouramajian et al. further develop
the structure into the time index+ [48]. The enhanced structure uses a
compression technique that shares the live entries of two sibling leaf pages
in a shared bucket. This technique can also be used by a larger set of
leaf pages, so that entries shared by all of the leaf pages are placed in
a shared bucket. The compression technique greatly enhances the space
usage, but the bucket updating is costly, and the situation at any given
version needs to be reconstructed based on multiple sources.

Lanka and Mays have applied the persistence methods of Driscoll et al.
discussed above to make a fully persistent B+-tree [51]. They propose var-
ious different schemes for converting a standard B+-tree into a persistent
one; namely, the fat node method, the fat field method, and the pure ver-
sion method. All the methods are built on top of a standard, ephemeral
B+-tree. A fat node in the persistent B+-tree of Lanka and Mays is the
extension of a B+-tree node. It is a logical collection of B+-tree nodes,
with an added version block that is used to locate the B+-tree node cor-
responding to a given version. Different versions may point to the same
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B+-tree node, if the contents of the subtree rooted at that node are iden-
tical for both versions. The version block is attached to the beginning
of the fat node. In the fat node method, the logical index thus contains
alternating index blocks and version blocks, so that a search traversing
from a root page first selects the correct pointer based on the searched
key value, then selects the correct pointer based on the version attribute,
and so on. The problem with the fat node method is space usage—each
update creates a new disk block. In the fat field method, some of the
versioning information is attached to the B+-tree pages, but the version
blocks are still used in some situations. The fat field method is in fact
quite close to the structure of the more recent indexes. Because the tree
contents and the pointers in index pages change between versions, the
root of the index also changes between different versions. The fully per-
sistent B+-tree thus uses a root∗ structure to store pointers to the roots
of different versions. The pure version method, on the other hand, is
a straightforward extension of a B+-tree, where the index pages are left
as they are, and the versioning information is attached to the entries at
leaf pages. This approach is more space efficient, but it does not cluster
different keys of a single version close to each other, and range queries are
therefore not efficient.

The fully persistent B+-tree was designed to be fully persistent, so that
new versions can be based on any previous version (see Definition 2.5).
This is achieved by maintaining an auxiliary structure that describes the
version history. The history is modelled as a directed acyclic graph, so
that different version branches can be merged. In effect, the auxiliary
structure is used to fetch the ancestor set Av for each version v. For
convenience, Av is defined to include the version v. When a query for a
version v is performed on the fully persistent B+-tree, only versions that
are present in Av are considered. For partial persistence, we can omit the
auxiliary structure and simply consider all versions.

Tsotras and Kangelaris have discussed I/O optimality and propose an
I/O optimal (according to their definition) index structure called the snap-
shot index [90]. The snapshot index stores new data items sequentially
in a doubly-linked list of pages. The underlying structure is therefore
basically a log file of item insertions. At all times, one of the pages is
an accessor page that receives all new records that represent item inser-
tions or updates. Access to current entries is made efficient by keeping
only pages that are useful on the list. Useful pages have at least a min-
imum amount of entries that are alive. Pages that are no longer useful
are moved away from the main item list but they are kept linked to the
pages in the list. The index also maintains an auxiliary dynamic hash
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structure for locating the most recent update to any given data item,
hashed by the item key. The hashing function is used to make updates
efficient: any item that is to be deleted can be located via the hashing
function in expected constant time, and any new item to be inserted can
be placed at the single accessor page in constant time. In practice, the
snapshot index has an expected constant update cost. Queries, however,
need to search through all the entries that are alive at the queried version,
because the entries are not ordered on the key attribute. The snapshot
index is therefore efficient for constructing the entire (unordered) set of
data items belonging to any given version, but not for querying a range
of keys or a single key of a given version. More formally, the snapshot
index is I/O optimal for ∗/−/point queries, but not for range/−/point or
point/−/point queries.

3.6 Multidimensional Index Structures

Multidimensional index structures have also been used for indexing mul-
tiversion data. Recall from Section 2.4 that multiversion data items are
tuples of the form (k, #–v ,w), where k is the data key and #–v is life span of
the data item; that is, the range of versions (transaction-time instants)
during which the item is alive. The key and version dimensions are or-
thogonal, and the data item may thus be uniquely identified by a two-
dimensional line segment in key-version space that is parallel to the ver-
sion axis (see Figure 3.3). When considered in this way, the data items
can then be indexed by a multidimensional index structure. In this case,
the pages of the multidimensional index structure cover regions of key-
version space. These regions are generally known as minimum bounding
regions, or MBRs. Figure 3.3(b) shows one possible way to cover a set of
multiversion data items with suitable MBRs.

Perhaps the most widely used multidimensional index structure is the
R-tree of Guttman [34] and its variants, such as the R∗-tree of Beckmann
et al. [9]. R-trees do not, in general, guarantee logarithmic access times
in all situations. Even an exact-match query in the standard R-tree may
require traversing multiple paths, because the key-version regions of sib-
ling pages may overlap. However, when discussing multiversion data, it is
worth noticing that the key-version ranges of data items stored in the leaf
pages cannot overlap. This means that the overlap in index pages may
be reduced when storing multiversion data. On the other hand, standard
multidimensional index structures are designed to index data items with
static spatial dimensions. Multiversion data items have a life span #–v that
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Figure 3.3. Multiversion data indexed in a multidimensional index.
Reading from the left, first items with keys 2, 3 and 1 were consecu-
tively inserted into the database at different versions. After that, data
item with key 3 was updated and 4 was inserted at the same version.
Finally, the item with key 2 was deleted.

is initially an infinite range [v1,∞) starting from v1, as the item is not
yet deleted. When the multiversion data item is deleted, its life span is
cropped to a finite range [v1, v2). The life span is thus not static, and the
data items are not perfectly suited for multidimensional indexing. The
initially infinite ranges of the data items also cause problems for indexing.

Once a multiversion data item has been deleted, it can no longer
be modified, and its life span and key-version range become static. The
PostgreSQL database system, initially introduced in an article by Michael
Stonebraker [88], takes advantage of this fact. Initial versions of the Post-
greSQL database clustered the data item entries in a standard snapshot
index (i.e., a B+-tree) based on the key attribute. Different versions of
the data item were linked in a chain of delta records that described the
item updates. A vacuum cleaner process was run periodically to move
the earlier versions of data items into an R-tree index. At this point, the
moved data items were static, and could be properly indexed in an R-tree.
The R-tree was thus used as a storage for historical entries. Kolovson and
Stonebraker [46] have also designed different variants of this design that
utilize magnetic disks or combinations of magnetic and optical disks. Cur-
rent versions of the PostgreSQL [74] include GiST indexes (generalized
search trees [38]) that can be used to implement R-trees.

There are still problems even when storing only static multiversion
data items (i.e., multiversion data items that have already been deleted)
in an R-tree, because the data items have highly varying lengths. A
single multiversion data item with a long life span causes the entire leaf
page where it resides in to have a wide bounding region. A wide leaf
page causes the entire path from the leaf page up to the root page to
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have wide bounding regions, because the MBRs of the parent pages must
cover the MBRs of their child pages. This in turn leads to high overlap
between pages, which causes search performance to degrade. Kolovson
and Stonebraker have designed the segment R-tree, or SR-tree to alleviate
these issues [47]. The SR-tree allows data items with long life spans to
be stored higher in the tree, thus reducing the overlap on lower levels of
the tree. Because the pages on the higher levels should also have space
for enough index entries (i.e., pointers to child pages), the SR-tree allows
pages that are higher on the tree to be larger. The index structure can
be further enhanced if some assumption of the distribution of the data
items can be made. Kolovson and Stonebraker also introduce skeleton
SR-trees that make this initial assumption and organize the structure of
the tree based on it. The index is dynamic, however, so it will adapt to
the actual distribution of the data items. According to their tests, the
skeleton SR-tree outperforms both the SR-tree and the R-tree when used
as a multiversion index.

Regardless of the enhanced performance of the skeleton SR-tree, the
fact remains that R-trees and other methods based on them do not have
logarithmic cost guarantees, and cannot therefore be considered optimal
for indexing multiversion data. Another problematic issue with R-trees
is concurrency control and recovery. The MBRs of the R-tree pages need
to be consistent with the MBRs of the child pages, so they need to be
updated whenever entries are inserted or deleted. In standard R-trees,
insertion causes MBR enlarging on the path from root to a leaf page.
This can normally be processed during the search for a proper page to
accommodate the new entry. Item deletion, however, causes MBRs to
shrink, and the shrinking must be done bottom-up. This is challenging
for concurrency control, because large parts of the tree need to be kept
locked during the deletion operation to ensure correct operation and to
avoid deadlocks.

3.7 Hashing Structures

Hashing is generally used for very efficient, constant-time membership
queries, when a suitable hashing function for the indexed values exists. A
hashing function h ∶X → I maps all values x in the source domain X into
a finite set of integers. The size of the target set is normally much smaller
than the size of the source set. Some source values are therefore neces-
sarily hashed into the same integer value in the target set, thus causing
collisions. Each hashed value h(x) identifies a bucket that conceptually
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holds all the objects that have the same hash value. The range of hashed
integers is thus 0,1, . . . , n− 1, where n is the number of buckets allocated
for the index. Each bucket can be implemented, for example, as a linked
list of database pages.

With traditional hashing methods, the hashing function is static, and
the size of the target set (n) is therefore predefined. If too small a target
set was initially selected, hashing becomes inefficient because collisions
occur more and more frequently, and the object chains become longer. In
these situations, a complete reorganization (a re-hashing) of the hash
table is required. Litwin has presented a linear hashing scheme that
dynamically changes the hashing function so that the size of the target
set can grow [53]. Periodically, a single bucket bi is split into two buckets
bi and bj by changing the hashing function so that instead of mapping the
entries x ∈ bi into bi, some of them are mapped to bi and some into bj. This
can be achieved by organizing the bucket splits correctly. In practice, if a
hashing function hi used at round i maps objects into a range 0,1, . . . , ni−
1, then the hashing function hi+1 used for the next round i+1 maps objects
into the range 0,1, . . . ,2ni−1, thus doubling the range size ni+1 = 2ni. For
all the objects x either hi+1(x) = hi(x) or hi+1(x) = hix + n. This internal
reorganizing happens one bucket at a time, so there is no extensive one-
time reorganization. At most two different hashing functions need to be
used to access any object, and so the expected performance of the hashing
remains the same, even if the set of stored objects grows.

Kollios and Tsotras have expanded the linear hashing method for hash-
ing multiversion data items [45]. In their partially persistent linear hash-
ing method, each data bucket stores multiversion data items similar to
our definition (see Definition 2.7). When a bucket split occurs, the hash-
ing function changes and some entries need to be moved to a new bucket.
In this situation, the entries are moved logically ; that is, a live multi-
version item (k, [v1,∞),w) that is moved during a split at version v2
from bucket bi to bucket bj remains in bi, but the entry representing
it is changed to the historical entry (k, [v1, v2),w), and a new live entry
(k, [v2,∞),w) is inserted into the new bucket b2. The historical query op-
eration then reduces to finding the correct hashing function used at the
historical version, and then finding the historical entry from the correct
page. For the first part of the query, Kollios and Tsotras maintain an ar-
ray that stores information about the hashing functions used for different
versions. Each array slot represents a version during which the hashing
function has changed, and locating the correct function thus requires a
binary search on the array. This search adds a logarithmic cost on the
historical query, which is otherwise an expected amortized constant-time
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operation. Kollios and Tsotras note, however, that the array should be
small enough to remain in main memory and thus the effect of this search
on the overall query performance should be negligible.

Hashing functions are efficient for solving the point/−/point query,
with (almost) an expected Θ(1) constant query and update costs. The
trade-off is that other query types cannot be processed efficiently. Key-
range queries are especially inefficient, because the keys are not clustered
near each other. In fact, finding the next key in a hashing structure
requires either traversing through the entire structure or, even worse,
trying out all possible next keys. Hashing structures are therefore not
suitable as a general multiversion index structure.

3.8 Version-Control Systems

Software engineers use version-control systems (VCS) to share the soft-
ware code between the developers and to maintain the history of all the
previous versions of the software. A developer checks out the code from
the central version-control system, creates his modifications, and finally
commits them to the VCS, thus creating a new version. In this sense,
version-control systems are in fact transaction-time databases. Most
version-control systems allow software engineers to create branches on
the version history, so that different teams can work with different fea-
tures without disturbing each other. Version-control systems are therefore
fully persistent. Examples of version-control systems are the concurrent
versions system (CVS) [20], Subversion [22], and Git [30].

The main difference between version-control systems and traditional
databases is in their usage. Multiversion database indexes are used to lo-
cate data item tuples based on a single key or a key range, by either fixing
the version to a single point or by specifying a range of versions (recall the
different query types from Section 2.3). Version-control systems, on the
other hand, are used for much more specific queries, such as “find all the
differences between versions v1 and v2” (with v1 and v2 possibly on totally
different branches), “find all the changes to the data item identified by k”,
or “find the version during which the line l was changed in the text file
identified by k”. These are queries that could not be effectively answered
using a traditional database index. A multiversion database system could,
however, conceivably use an existing version-control system for indexing
the multiversion data items, and it is therefore worth it to examine these
systems a little further to determine whether they would be efficient for
this purpose.
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Fendt has evaluated the performance of some of the more recent
version-control systems in an online article at the Linux Foundation [29].
He shows that the Git version-control system is the fastest one, alongside
with another VCS called Mercurial. We will therefore concentrate on Git.

The Git version-control system is based on indexing objects by the
SHA-14 hash values of their contents [30, 93]. The objects are stored in
the file system, named with the hexadecimal representation of the SHA-1
hash value. The file system therefore works as the primary index for the
stored objects. Four types of objects can be stored in the Git database:
blobs, trees, commits, and tags. The blob type is used to represent any
object that is stored in the Git VCS, and so every file that is added to
Git is stored in a blob object. Tree objects are used to maintain directory
hierarchies, commit tags represent commits (i.e., database versions), and
tags are used to assign cryptographic tags for other objects (e.g., for
verifying their contents).

Each tree object logically represents a single node and all its children
in a directed acyclic graph. The tree object is basically a collection of
pointers to objects stored under that node. A pointer that points to an
object o is stored in a tuple of the form (m, t, s, n), where m is the file
system mode of the file that represents o, t is the type, s is the SHA-1
digest of the object o, and n is the name of the object. Subdirectories are
maintained by storing pointers to other tree nodes. To proceed from a tree
node x to its child node, we find the correct child pointer (m, t, s, n), and
use the SHA-1 hash value s to retrieve the child object from the index (i.e.,
by loading the file named s from the file system). Different versions are
created by possibly creating new tree objects for that version. Any child
object (e.g, a text file) that has changed has an updated SHA-1 hash value,
because the hash is based on the contents of the stored objects. This in
turn changes the tree object, because the tree object contains the SHA-1
values of its children in the pointer records. The changed tree object
again needs to be indexed with a different SHA-1 value, and thus a change
propagates all the way to the root of the directory structure. Unchanged
nodes can however be efficiently reused between different versions. The
Git VCS therefore relies on a form of path copying (see Section 3.5, p. 39).

A straightforward way of using the Git version-control system as a
multiversion index structure would be to store each key in a single tree
object. A binary search could then be used to quickly locate the searched
key among the pointers stored in the tree object. The single tree object

4SHA-1, the Secure Hash Algorithm, is a cryptographic hash function that com-
putes a 160-bit hash value (called digest) from its input.
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would then work as a dense index for the stored objects. While querying
would be efficient, note that updating any key necessitates duplicating
the entire tree object, thus duplicating the entire indexing portion of
the multiversion database. The update performance and the space usage
of this structure would be suboptimal. Also note that this kind of a
structure could not be used as a sparse (primary) index structure, because
all the child objects (data items stored in the database) must be stored in
separate files. As a conclusion, the version-control systems are designed
for maintaining versions of files and file directories, and they are not really
suited for usage as general-purpose database indexes.

3.9 Other Structures

In addition to the index structure already reviewed in this chapter, there
are still a few structures worth noticing. For example, the search engine
conglomerate Google has built a customized database system for orga-
nizing the petabytes of data their search engines need to search through.
Their database system is called Bigtable [21], and it is designed to be a
highly scalable database system that can be used to index vast amounts
of data in a distributed database environment. What is interesting from
our point of view is that Bigtable also offers some basic versioning func-
tionality: data items are stored with versions, and they can be used for
querying. There is a catch, however, as Bigtable was not designed to be
primarily a multiversion database index. The data items are ordered on
the item keys, and all the versions of a data item are stored in the same
page (or cell, by the terminology of Bigtable). Cells can have multiple
versions which are chained together by placing the most recent version of
the cell in the front of the chain. The Bigtable thus has problems similar
to those of the versioned B+-tree described in Section 3.2 and of indexes
that use reverse chaining (described in Section 3.5, p. 39): early versions
cannot be directly accessed (because of the version chain), and key-range
queries are not efficient. The problem for key-range queries of the most
recent version is alleviated somewhat, because not all of the versions of a
given data item need to be scanned. Key-range queries of the earlier ver-
sions, however, must still traverse the version-chains to locate the correct
version. From this we can arrive to the conclusion that the Bigtable is
not optimal for indexing multiversion data.

Jouini and Jomier [43] have also recently published an article compar-
ing three different approaches for indexing fully persistent transaction-
time data (i.e., data with a possibly branched evolution). Their structures
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are called the B+V-tree, the OB+tree, and the BT-tree. From these, the
B+V-tree resembles the versioned B+-tree introduced in Section 3.2, but
with support for branched history evolution. Like the versioned B+-tree,
the B+V-tree is not efficient for range queries because the entries are
clustered primarily by their keys, and only then by their versions. The
second structure, the OB+tree, builds multiple B+-trees that are allowed
to share unchanged branches. This approach is an example of path copy-
ing (see Section 3.5, p. 39), and any update performed to a leaf page at
database version v to create a new version v+ therefore necessitates the
creation of a new root-to-leaf path, thus requiring Ω(logmv) space for
each update, where mv is the number of entries alive at version v. The
final index structure, the BT-tree, indexes entries based on both the key
and the version attributes, thus making this structure closer to the more
efficient approaches described in the next section. As the details of the
index structure are not discussed, we cannot really determine the charac-
teristics of this index structure. The other two structures are suboptimal
for indexing partially persistent data because of the design choices they
are based on, as explained above.

51



CHAPTER 3 MULTIVERSION INDEX STRUCTURES

52



CHAPTER 4

Time-Split and Multiversion B+-trees

The previous chapters have discussed the theory behind multiversion
databases (that is, partially persistent transaction-time databases), and
reviewed some approached for indexing such data. So far, none of the
structures introduced have been optimal, according to our definition (Def-
inition 3.3). In this chapter, we review three of the more recent multiver-
sion index structures, one of which are optimal. In addition, we shortly
discuss a multiversion database system that uses one of these structures
and is built on top of the commercial Microsoft SQL Server.

We begin this chapter in Section 4.1 by listing some of the com-
mon design ideas shared by all the efficient structures reviewed in this
chapter. Then, in Section 4.2, we review the first of these structures,
the time-split B+-tree of Lomet and Salzberg (TSB-tree [58, 59]). Af-
ter that, Section 4.3 describes Immortal DB [54–57], which is based on
the TSB-tree. Immortal DB is a multiversion database management sys-
tem that Microsoft is researching and developing on top of the Microsoft
SQL Server. In Section 4.4, we review the multiversion B+-tree of Becker
et al. (MVBT, [7, 8]), the first optimal multiversion index structure. Fi-
nally, Section 4.5 describes the multiversion access method of Varman
and Verma (MVAS, [92]), which was developed at about the same time
as the MVBT, and shares many characteristics of the MVBT. Varman
and Verma use a slightly more relaxed definition of optimality for multi-
version indexes, and the MVAS is not optimal according to our definition.

4.1 Common Design Bases

All of the index structures presented in this chapter have a similar struc-
ture: the database pages cover regions in key-version space, the index
structures form a directed acyclic graph of database pages (although
these structures may still be called trees), and for each version, there
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exists a search tree Sv (see definition below) that is used to locate the en-
tries belonging to that version. Let us call these multiversion structures
region-based multiversion index structures:

Definition 4.1. A region-based multiversion index is a multiversion
database index structure in which all the pages cover regions in key-
version space. The structure of the pages forms a directed acyclic graph.
Let kvr(p) denote the key-version region of a page p. Each parent page p
at level l contains links to child pages Q at level l − 1 so that q ∈ Q ⇔
kvr(p) ∩ kvr(q) ≠ ∅. The key-version regions of pages on the same level of
the graph do not overlap. ◻

Definition 4.2. For each version v in a region-based multiversion in-
dex, there is a search tree Sv that is a subgraph of the entire multiversion
index graph. The subgraph Sv is a tree and all the entries of the data
items that are alive at version v are located in the pages of Sv. An ex-
ample of a search tree S10 is shown in Figure 3.1(b) on page 37. For
each search tree Sv and all levels l of Sv, the pages that belong to Sv at
the same level l partition the entire key-space into disjoint regions. Each
search tree thus covers the entire key space at each level of the search
tree. ◻

Definition 4.3. A region-based multiversion index structure is said
to be structurally consistent, if all the index-specific invariants of the
structure hold; and balanced, if (1) it is structurally consistent; (2) all the
pages of the search tree Sv contain at least a minimum number of entries
that are alive at version v, for each version v; and (3) for any search
tree Sv, all the root-to-leaf paths of Sv are of the same length. ◻

Note that our definition of a balanced index structure requires that
the lengths of all the search paths within any one version are of the
same length. In practice, this is guaranteed by designing the structure-
modification operations so that the index never becomes unbalanced.

Figure 3.1(b) in the previous chapter shows the general structure of
these multiversion index structures, and Figure 4.1 shows the structure
of a balanced region-based multiversion index that has an auxiliary root∗

structure for locating the roots of different search trees. Note that search
trees Sv1 and Sv2 rooted at pages p6 and p9 have a different height. Let us
also define what we mean by live entries and live pages in the multiversion
indexes:

Definition 4.4. For all versions v, an entry that represents a data item
is alive at version v if the data item is alive at version v; and a database
page is alive at version v if it is part of the search tree Sv. ◻
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Figure 4.1. Structure of a balanced multiversion index.

Salzberg et al. have recently published a general framework for in-
dexing fully persistent transaction-time data [76] (recall Definition 2.5).
Although designed to include fully persistent indexes, the framework en-
compasses many of the features present in the efficient indexes reviewed
in this chapter. Such features are, for example, maintaining a minimum
number of live entries (Definition 2.2) in each page and consolidating
(merging) those pages where the number of live entries falls below the
acceptable limit. Because the framework is designed for full persistence,
some of its features are however unnecessarily complicated for partial per-
sistence. More specifically, the framework describes a version-tree struc-
ture that is used to determine which data item entries are along the same
version branch. This adds a significant overhead to finding the correct
version of a data item from a database page. Furthermore, some of the
pages in the index structure described in the framework can contain ghost
pages, which are pages that only contain null markers that are used to
specify endpoints of the life spans of data items. As is shown with the
multiversion B+-tree (described in Section 4.4), these pages can be avoided
if the structure is only partially persistent.

4.2 Time-split B+-tree

The time-split B+-tree (TSB-tree) of Lomet and Salzberg [58, 59] is a
multiversion index structure that is based on Easton’s write-once B+-tree
(see Section 3.5, p. 41). The TSB-tree structure forms a directed acyclic
graph of database pages. There is a single root page that is shared by all
versions, and the height of the search tree Sv is therefore the same for all
versions v. The root page of the TSB-tree covers the entire key-version
space. The graph structure is formed by splitting pages that have become
full. Each page can be either key-split or time-split. Splitting a page p
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creates a new page p′ and the entries are distributed between p and p′

based on the new dimensions of the pages. If the key-version range of a
child page (or the life span of a leaf-page entry) extends past the split
boundary, the child page identifier (or leaf-page entry) is duplicated to
both of the pages p and p′.

There are two types of pages in the TSB-tree: current pages and
historical pages. The life spans of all current pages cover the current
version; that is, the current pages are alive. The time-split operation
creates a new historical page p′. When time-splitting page p, entries with
deletion times smaller than the split boundary are moved to the historical
page p′, entries with life spans covering the split boundary are copied to
the historical page, and the rest of the entries are left in the current
page p. The page p thus remains in use for current-version queries, and
the historical page p′ can be moved to a tertiary storage for archival. This
is possible, because the TSB-tree maintains the following invariant:

Invariant 4.5. In the TSB-tree, current pages have at most a single
parent. Historical pages can have multiple parents.

If such an invariant were not enforced, there might be an unbounded
number of parent pages that need to be updated when a page is split.
However, this invariant imposes a restriction on the time-split operation:
none of the live entries on page p must be copied to the historical page p′.
A page p therefore cannot be time-split into a historical page p′ based on
a version v that is covered by the life span of a live entry; that is, if p
contains an entry with a life span [v1,∞) such that v1 < v. By adhering to
these rules, the following invariant can be maintained, and the historical
pages can be directly written to a write-once media during a time-split.

Invariant 4.6. In the TSB-tree, historical pages are never modified.

When fine-tuning the TSB-tree, it is possible to make a choice on how
often key splits and time splits are used. If the goal is to minimize the
index size, key splits should be used more often. If the performance of
the current-version queries is important, version splits should be more fre-
quently applied. This is a natural way for adjusting the behaviour of the
index for varying database loads. The original TSB-tree [58] was designed
mainly for scenarios where data is never deleted, and pages therefore do
not need to be merged. This limitation still exists, and it means that the
key ranges of pages can only shrink, and never expand.

The TSB-tree that was adapted for the Immortal DB (discussed in the
next section) manages data deletion by inserting new entries that mark
item deletion. While this approach works, it means that key splits and
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time splits alone cannot guarantee that pages have a minimum number of
live entries for all the versions that are stored in the pages. For optimality,
the access costs of the operations must be logarithmic in the number of
entries that are alive at the queried version. This is guaranteed if the index
structure is balanced (see Definition 4.3), so that each page p with a life
span [v1, v2) contains at least min-live entries that are alive at version v,
for each v ∈ [v1, v2). Here, min-live is an integer configuration variable
that must be larger than one so that the fan-out at each level of the
search tree is greater than one, thus guaranteeing a logarithmic height
for the search tree and maintaining the performance of range queries.
The variable min-live must furthermore be linearly dependent on the page
capacity B, so that the cost differs only by a constant when the base of
the logarithm is B.

Lomet and Salzberg [58, 59] do not give asymptotic bounds for the
costs of the user actions, but rather derive exact formulas for calculat-
ing the size of the index structure and for the amount of redundancy in
the index. A general space complexity class for multiversion indexes is
O(n/B) database pages, where n is the number of updates performed
in the history of the database; the TSB-tree belongs to this complexity
class [78]. Regarding time complexity, we formulate some general bounds
for the costs of the actions in the TSB-tree here:

Theorem 4.1. All single-key actions in the TSB-tree targeting any
version v have a cost of Θ(logBm) pages, where m is the number of up-
dates performed on the TSB-tree during its history. The worst-case cost
of a key-range query action that queries the range [k1, k2) of version v
is Θ(logBm +mk/B), where mk is the maximum possible amount of dis-
crete keys in the queried range (for databases that store integer keys,
mk = k2 − k1).

Proof. Because the TSB-tree has a single root page, the height of
the index structure is determined by the total number of entries indexed
by the entire TSB-tree, which in turn is dependent on the number of
updates performed on the index. The cost of the single-key operations
derives directly from the traversal from the root page to the correct leaf
page. For the range query, the number of page accesses is not bounded by
the size of the retrieved item set, because it is possible that there are leaf
pages that contain only deleted entries that are not relevant to the query
but still need to be processed. In the worst case, the index contains mk

live entries in the queried range at version v1; that is, the index contains
a live entry for each possible key in the queried range. Assuming that
the history contains no deletions, then m = mv1 (when version v1 is the
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latest version), and the range query for version v1 is optimal (as per
Definition 3.3), because mk = r, the size of the retrieved item set. If
all the entries are deleted at version v2, the entries are marked deleted
but the leaf pages are not merged. The range-query operation targeting
version v2 must process as many pages as the query that targets version v1,
even though the pages do not contain any entries that are relevant to the
query. ◻

Lomet and Salzberg have evaluated the performance of several dif-
ferent splitting policies [59]. According to their experiments, the policy
called Isolated-Key-Split (IKS) is a good choice if rewritable media (write-
many, read-many, or WMRM media) is available and inexpensive1. With
this policy, pages are key-split whenever more than two thirds of the en-
tries in the page are alive; and time-split otherwise. When time-splitting a
page, the split is always performed based on the latest committed version.
This policy optimizes the size of the index structure, and was designed
at a time when WMRM media was not as inexpensive as it is currently.
With the Immortal DB more recent split policies have been introduced.
These are reviewed in the next section.

From the beginning, it has been assumed that lazy timestamping (see
Section 2.4, p. 17) is used with the TSB-tree. The initial TSB-tree ar-
ticle [58] does not explain how and when the records should be time-
stamped with the correct commit-time versions, but rather suggests that
Stonebraker’s approach for the PostgreSQL database system [88] could
be used. In this approach, each relation may be assigned to one of the
following three levels: no archive, light archive, and heavy archive. From
these, no archive practically means that the relation is a single-version
relation, and no access to past states is possible. For the other settings,
the entries are first stamped with the transaction identifier, and the map-
ping from commit-time versions to transaction identifiers is inserted in
a special relation when the transaction commits. With the light archive
setting, each time a historical entry is requested, the transaction identi-
fier is mapped to the commit-time version by reading the proper value
from the special relation. With the heavy archive setting, the mapping is
performed on the first access, and the historical entry is updated with the
commit-time version so that subsequent accesses do not need to load the
mapping from the special relation. The Immortal DB (discussed in the
next section) more clearly defines that a timestamping scheme similar to
the heavy archive option is used to lazily timestamp the entries.

1Their exact wording was that the cost of WORM storage should be less than a
factor of ten cheaper than WMRM storage cost [59].
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In conclusion, the TBS-tree is a practical index structure that can be
easily fine-tuned for different data sets, but it does not guarantee optimal
access costs for updates or queries of any version.

4.3 Immortal DB

Lomet et al. have chosen the time-split B+-tree (TSB-tree) as the basis
when implementing multiversion support to the Immortal DB multiver-
sion database system [54–57]. The multiversion database is built on top
of existing Microsoft SQL Server code. An important aspect of the imple-
mentation was that the existing program code must be compatible with
the new multiversion code. The multiversion functionality has been in-
troduced gradually, first by chaining versions together in the original SQL
Server B+-tree index, and then by replacing the B+-tree based index with
the TSB-tree [55, 56]. Immortal DB therefore serves as an example that
multiversion functionality can be gradually added to an existing database
system.

The Immortal DB also introduced changes to the TSB-tree index
structure. From our point of view, the important ones are the more spe-
cific explanation of lazy timestamping and the new splitting policies de-
signed to cluster the data items that are alive at the current version more
efficiently. The articles furthermore specify how the entries are stored in
the data pages [55, 56] and how the pages can be compressed [56].

The entries in Immortal DB are initially timestamped with the tem-
porary transaction identifier. When the transaction commits, a mapping
between the transaction identifier and the commit-time version of the
transaction is inserted into a persistent timestamp table (PTT). This ta-
ble is stored in a B+-tree index so that the contents are made persistent
and can be recovered in the event of a system crash. Because all entries
need to be timestamped during the first access, there will be many queries
to the PTT. The Immortal DB therefore also maintains a main-memory-
based volatile timestamp table (VTT) that serves as a cache for the PTT.
In addition to storing these mappings, the VTT also contains a reference
counter for determining how many entries there are that have not yet
been timestamped. When new data items are inserted to the database,
the reference count is incremented. When entries in the database pages
are timestamped after the transaction that inserted them has committed,
the reference counter is decremented. When the reference counter reaches
zero, the mapping is removed from both the VTT and the PTT. The PTT
is thus used only to provide recoverability: if the system fails, the VTT
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can be rebuilt from the PTT contents. The reference counter, however,
is not present in the PTT, and is thus lost if the system fails. This can
cause some entries to remain indefinitely in the PTT and VTT, because
it is not known if there still exists entries that need to be timestamped
with the commit-time version.

The Immortal DB articles also specify two new split policies for the
TSB-tree, namely the WOB-tree split policy and the deferred split pol-
icy. The WOB-tree split policy [56] updates the IKS split policy (see
Section 4.2, p. 58) so that whenever a page contains more than two thirds
of live entries, it is first time-split and afterwards key-split. Otherwise the
page is time-split, as with the IKS split policy. The split threshold (two
thirds of the entries in this example) is now a configuration variable, but
Lomet et al. use two thirds when there is no compression in the pages [56].
The deferred split policy [57] defers the key-split that is performed after
the time-split in the WOB-tree split policy. That is, if a page that needs
to be split contains enough live entries according to the threshold, then
the page is time-split and a key-split is deferred by marking the page.
When the marked page next needs to be split, it is key-split without first
time-splitting it. Unmarked pages that have fewer live entries than the
threshold are simply time-split, as in the WOB-tree and IKS split policies.

In addition to the deferred key-split, the deferred split policy intro-
duces batch updates to the PTT table. Normally, whenever a transaction
commits, the mapping from transaction identifiers to commit-time ver-
sions is inserted to the PTT, thus adding extra I/O operations to each
commit operation. With the deferred split policy, the mappings are only
inserted into the VTT during a commit operation. The PTT is then up-
dated later on with a larger batch of mappings. This reduces the number
of I/O operations as the PTT entries are clustered next to each other and
also because some of the entries may already have been removed from the
VTT and are therefore never inserted into the PTT at all. This happens
if all the entries a transaction T inserted have been accessed and time-
stamped before the next batch of updates is applied into the PTT. In
this situation, the transaction entry has already been removed from the
VTT and is never inserted into the PTT.

With Immortal DB, the focus on optimizing the TBS-tree has moved
from optimizing space usage into optimizing both space usage and query
performance [56, 57]. The original TBS-tree (see previous section) was
designed for data that is never deleted [58]. When data deletion is allowed,
maintaining the number of live entries for each page is more challenging.
Even though the new Immortal DB splitting policies are better suited
for transaction histories that also contain deletions, the fact remains that
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pages are not merged, and thus key ranges cannot expand. If a current
page of the TSB-tree covers the key range [k1, k2), all the items in this
range are deleted, and no new items are inserted that fall into that range,
then the current page will contain no live entries. It will still be part of
the current-version database, and key-range queries will process it (also
recall the discussion in Section 3.3). The TSB-tree and the Immortal DB
are therefore suboptimal multiversion index structures, and range-query
performance may degrade when deletions are present.

4.4 Multiversion B+-tree

The first optimal multiversion index structure presented was the multi-
version B+-tree (MVBT) of Becker et al. [7, 8]. The MVBT follows a
single-update model, in which each update to the index creates a new
version of the index. The update cannot be rolled back, so the MVBT
structure is not transactional.

We can model a single multi-action updating transaction operating
on the MVBT, if we accept that the transaction cannot roll back. The
updates performed by the updating transaction T obtain versions that
form a contiguous range [v1, v2]. This means that the intermediate states
v ∶ v1 < v < v2 also persist, even though they are never queried as they are
internal to the transaction. For example, suppose that a transaction T
first inserts a data item with key k, and then updates it again and again. If
the last action of the transaction with commit-time version v on the data
item with key k is an update with value w, then an optimal multiversion
index only records the data item (k, v,w). In contrast, the MVBT stores
information of uncommitted versions of the data item that never will be
committed.

There are some benefits to this model, however. Concurrency control
is straightforward, because only one updating transaction is allowed to
operate on the index at a time. As we will show in Section 5.1, multiple
read-only transactions can be allowed to operate on the index concurrently
with the single updating transaction. Because there is only a single updat-
ing transaction, and every update operation creates a new version of the
index, the most recent committed version can be maintained in a single
variable. The variable vcommit denotes the current version of the MVBT
index. At the beginning of each action, vcommit is incremented, and each
operation on the index is then tagged with the incremented value. For
correct operation, the read-only transactions may only query the latest
version after the active updating transaction has committed. Therefore
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the implementation should maintain a separate variable that records the
latest committed version that precedes the version of the active updating
transaction. This variable is then read by the read-only transactions, and
updated when the active updating transaction commits. For simplicity of
the explanations, we will assume that vcommit denotes the latest commit-
ted version as seen by the updating transaction, and that it is incremented
at the beginning of the updating transaction.

As in the TSB-tree, pages of the MVBT cover axis-aligned rectangles
of key-version space. The key-version rectangle of a page p is unambigu-
ously defined by its components: the key range kr(p), and the version
range, or life span vr(p). The pages form a directed acyclic graph with
leaf pages at level one, and index pages on consecutively higher levels2.
In the MVBT, life spans are explicitly stored in each entry in the index
structure. Leaf-page entries are thus tuples of the form (k, #–v ,w), where
k is the key, #–v = [v1, v2) is the life span, and w is the associated data
stored in the data item. When a leaf-page entry is first inserted into the
index, its life span is set to #–v ← [vcommit ,∞), indicating that it has been
inserted at the current version and that it has not yet been deleted. If
an entry with a life span #–v = [v1,∞) is deleted, the life span is replaced
with #–v ← [v1, vcommit), thus marking that the entry was deleted at the
current version. The life span of a leaf-page entry is therefore not static,
but it changes when the item is deleted. After an item has been deleted
(or updated by replacing it with another item with a different associated
value), the life span of the historical entry becomes static.

For each level l in the MVBT index, the pages of level l partition the
key-version space into disjoint rectangles. The pages of level l cover the
entire key-version space, except for those ranges of versions v for which
the height of the search tree Sv was lower than l. An example of this
is shown in Figure 4.2. In the example, the search tree S0 of version v0
contains only the single leaf-level root page p1, and therefore the MVBT
index does not contain any pages at the second level before version v1.
At version v1, the root page is split into pages p2 and p3, and therefore a
new root page p9 at the next level is created.

The index pages contain pointers, or routers, to child pages [7, 8].
A pointer from a parent page p to a child page p′ is represented by a
tuple of the form (#–

k , #–v , p′), where p′ is the page identifier of the child
page p′. The key range

#–

k and life span #–v form the router (#–

k , #–v ) that

2Becker et al. say that leaf pages are at level zero, but as this is just a matter of
convention we have modified the definition here to better suit the convention used in
this dissertation.
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Figure 4.2. Partitioning of the key-version space in the MVBT. In the
image, vcommit = v6, which is indicated by the open ends of the life spans
of pages p7, p8, and p10. The level 2 image shows routers to page p5 in
pages p9 and p10.

guides the search to the child page. The router is set to the intersection
of the key ranges and life spans of the parent page and the child page.
This is illustrated in Figure 4.2(b), where the routers to the child page p5
are shown in both parent pages p9 and p10. For illustration, the page
identifiers stored in index pages are prefixed with a marker >. A parent
page p contains routers to each child page p′ such that kr(p) ∩ kr(p′) ≠ ∅
and vr(p)∩vr(p′) ≠ ∅, and the format of the MVBT index therefore follows
the general convention shown in Figure 3.1(b) on page 37.

The structure-modification operations on the MVBT are based on the
version-split operation, in which a live page p is killed ; that is, p is split
at the current version vcommit , and a new live copy p′ is created. The
life span [v,∞) of the old page p is cropped to [v, vcommit), and the life
span of the new page p′ is set to [vcommit ,∞). All the live entries in p
are copied to p′. Page p is now considered a dead page and is only used
for historical queries, and the new page p′ is used for current-version
queries. This operation is the same for index pages and leaf pages. All
structure-modification operations target the new page p′, and the killed
page p becomes static. Dead pages are never modified again, although
they might be deleted later to save space (see the discussion of purging
old versions in the MVBT article by Becker et al. [7, 8]). This is stated
more formally below.

Invariant 4.7. Dead pages in the MVBT can only be modified by a
purging process that is run to remove old versions. If an old version is
removed, it can no longer be queried. From the viewpoint of a user trans-
action querying for any version, all encountered dead pages are static.
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There are two basic structure-modification operations in the MVBT:
page split and page merge. A page split is triggered when an insertion
is attempted into a page that is full and cannot accommodate the new
entry, and a page merge is triggered when the number of live entries in
a page falls below min-live. To avoid thrashing between splitting and
merging the same page, all pages in the MVBT must contain between
min-split = min-live + s and max-split = B − s entries immediately after
any structure-modification operation, where s is a split-tolerance variable.
The variable s determines how many updates must at least be performed
on the page before a new structure-modification operation is required.

When a page p is split, it is first version-split into a new live page p′.
As described above, page p′ contains the live entries copied from page p. If
the number of live entries in page p′ is now between min-split and max-split,
the operation terminates, because the page can accommodate at least s
more updates before it needs to be either split or merged. If the number
of live entries is above max-split, page p′ is further key-split into two pages.
The key-split operation is identical to a standard B+-tree key split. This
is possible also for index pages, because at this point the new page p′

contains only live entries, and thus there are no entries with overlapping
key ranges. If the number of live entries on page p′ is below min-split, the
page must be merged with a sibling page. In this case, a sibling page p′′

is located, version-split, and merged with the page p′. If the merged page
contains more than max-split entries, it is further key-split into two pages,
similar to the key-split situation above.

The page merge operation, which is triggered when the number of live
entries on a page p falls below min-live, is identical to the merge operation
that takes place after a version-split. That is, page p is first version-
split, then a sibling page p′ is located, version-split, and the resulting
live pages are merged. The merged page might again have more than
max-split entries, in which case it is further key-split into two pages. In this
situation, the merge operation resembles the key-redistribution operation
of the B+-tree.

Because no historical data is removed from the killed page p in all the
structure-modification operations, and all the live entries are copied to the
new page p′, we can deduce an even stronger invariant for the MVBT:

Invariant 4.8. All entries in the MVBT pages remain in place. They
are never moved to another page. Only the deletion time of an entry may
be changed, always from ∞ to the current version vcommit .

When a non-leaf page is version-split, the copying of entries creates
a new parent, in addition to the old one(s), for the child pages pointed
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to by the copied entries. As noted before, the MVBT is not a tree but a
directed acyclic graph, which may have several roots. When a root page
is split, a new root page is created, but the old root page is still used as a
starting point when searching for historical entries. To accomplish this, a
separate structure called root∗ (see Definition 3.4) is used to store all the
different roots of the MVBT. The root∗ structure can be implemented, for
example, as a B+-tree that contains the page identifiers of the different
root pages, indexed by their creation versions. It is assumed that the
number of different roots is small, and that the root∗ structure can fully
reside in main memory.

The optimality of the MVBT is based on maintaining the following
invariant:

Invariant 4.9. Assuming that each version of the MVBT index con-
sists of only a single update, then for all versions v and all pages p, either
(1) page p contains at least min-live entries that are alive at version v,
where min-live is a configuration variable that is linearly dependent on
the page capacity B; or (2) page p is a root page of a search tree Sv and
p contains at least two entries that are alive at version v; or (3) page p is
the single page of a search tree Sv that has a height of one; or (4) page p
is not part of the search tree Sv and therefore contains no entries that are
alive at version v.

The first case of this invariant states that each page either contains
enough entries of the queried version so that all queries (including the
key-range query) are efficient, or the page is not part of the search tree of
the queried version and is therefore not processed at all. The two other
cases are special cases listed for completeness: a root page may contain as
few as two live entries, if there are no more pages at the next lower level.
Similarly, if all the n live entries of a version v fit on a single page, the
search tree Sv contains only a single page that has exactly n live entries.
Because this invariant is maintained, each search tree Sv is asymptotically
equivalent to a single-version B+-tree index, and all queries in the MVBT
index are optimal (see Definition 3.3), if the root page of the search tree
of the queried version is known.

Like the TSB-tree, the space complexity of the MVBT index is also
O(n/B) database pages, where n is the number of updates in the database
history [8, 78]. The time complexity of the MVBT actions has been shown
by Becker et al. [7, 8], and we reproduce the results here:

Theorem 4.2. Assume that every transaction consists of only one up-
date, the transactions all run in a serial order and they all commit. The
cost (see Definition 3.2) of the current-version single-key operations (key
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query, key insertion, and key deletion) in the MVBT index, when the roots
of the queried search trees are known, is Θ(logBmvcommit) pages, the cost
of the single-key query operation for version v is Θ(logBmv) pages, and
the cost of the key-range query operation for version v is Θ(logBmv+r/B)
pages, where mv denotes the number of data items that are alive at ver-
sion v, r is the number of live entries in the queried range and B is the
page capacity.

Proof. By Invariant 4.9, each page of the search tree Sv of version v
in the MVBT contains at least min-live entries of version v, except pos-
sibly the root page of Sv. The MVBT is always balanced, as shown by
Becker et al. [7, 8]. The height of the search tree Sv is thus Θ(logBmv),
because there are mv entries that are alive at version v, and min-live is
a linear function of the page capacity B. This explains the logarithmic
part logBmv of the costs, as the search tree must be traversed from the
root to the correct leaf node. The cost of the range query operation is
Θ(logBmv+r/B) by Theorem 3.1, because each page of the search tree Sv
contains at least min-live entries that are alive at version v. ◻

In the discussion above, we have omitted the page accesses required for
locating the root page of version v, when performing a query that targets a
version v. As mentioned earlier, the MVBT uses a separate root∗ structure
to store the root page identifiers of different versions. In practice, the root∗

is either a table or a single-version B+-tree, indexed by the version dur-
ing which the root of the search tree has changed. For example, suppose
that the root∗ contains the following entries: {(v0, p1), (v3, p5), (v20, p14)}.
Reading from this, versions [v0, v3) have page p1 as their root page,
versions [v3, v20) use page p5, and the rest of the versions [v20,∞) use
page p14.

Let us now discuss the cost of locating the correct root page for a user
action. If the root∗ is stored in a B+-tree index, locating the current page
requires access to Θ(logB n) pages, where n is the number of page identi-
fiers stored in the root∗. If the root∗ is stored as a table, the correct root
page identifier can be located by a binary search that accesses Θ(log2 n)
table slots, requiring access to Θ((log2 n)/B) pages. The number of page
identifiers in the root∗ is determined by how often the root page of the
current version search tree has changed. As noted by Becker et al. [8],
if the MVBT index has been created by a sequence of insertions only,
the leftmost path of the current version search tree Svcommit contains all
the root pages of the MVBT index, and the number of different roots is
therefore n = logBm = logBmvcommit , where m is the number of data items
stored in the entire index structure. We therefore expect that the number
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of different roots will be small in practice. It is possible, however, that
the number of roots is much larger.

The worst-case scenario would be to alternatively insert an entry in
one version into an originally empty database, and delete it in the next. If
the index implementation explicitly stores null root page identifiers (v,�)
to the root∗ to denote that the search tree of version v is empty, then
the number of roots is directly dependent on the number of data items
stored in the index (n = Θ(m)), because there must then exist a page
identifier for each version in the root∗. If the implementation reuses the
root page identifier of the previous version leaf-level root page, then the
page identifier in the root∗ does not change for each update. The root
page must however change after Θ(B) updates, because the single root
page can only accommodate that many entries. The number of root pages
is therefore at least n = Θ(m/B), which is still linearly dependent on the
number of versions, assuming that the page capacity is a constant. In
this pathological worst case, locating the correct version from the root∗

can have an asymptotic cost that is higher than the cost of the operation
itself. However, the root page does not need to be separately located for
each query operation.

For updating transactions, and when querying for the most recent
version, the root page of version vcommit is required to begin the search
tree traversal. For efficiency, the MVBT index implementation should
cache the page identifier of the current-version root page. Because there is
only one updating transaction, and read-only transactions may not target
the version that is being updated, the page identifier can be stored in a
single variable without using locks to protect its value. Therefore, there is
no additional cost for performing any update action, or any query action
that targets the latest version. Once the updating transaction completes,
creating version v, the root page of version v remains static, and thus all
entries representing historical versions in the root∗ can be cached. Each
read-only transaction that targets a version v < vcommit needs to locate
the page identifier of the root page of the search tree Sv only once. The
correct page identifier can also be provided by the context. We therefore
feel justified in stating that locating the root page of the queried version
from the root∗ has a negligible effect on overall query performance.

We stated earlier on that the MVBT follows a single-update model, so
that only one update may receive the same version. Let us now consider
what happens if we try to index more than one update with the same
version in the MVBT index. Consider, for example, simply inserting
entries with consecutive keys 1,2,3, . . . , n to the MVBT. The scenario is
shown in Figure 4.3, with an illustrative page capacity of three entries per
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page. The first three entries are inserted to page p1, therefore filling the
page. The insertion of the fourth item leads to an overflow which triggers
a page split. The page split begins with a version-split operation, which in
turn causes the life span of the old page and its entries to degenerate into
an empty interval [1,1). This page does not hold any relevant information
as it is no longer a part of any version of the database. The pages created
earlier by the same transaction are the cause of this problem. As it turns
out, this problem can be remedied by redesigning the algorithms as we
will show in Section 5.5. In this problem scenario, the page could be
key-split directly, without first version-splitting it.

[−∞,∞),[1,∞)

(1, [1,∞),w1)

p1

(a) Insert key 1

[−∞,∞),[1,∞)

(1, [1,∞),w1)

(2, [1,∞),w2)

(3, [1,∞),w3)

p1

(b) Insert keys 2–3

[−∞,∞),[1,1)

(1, [1,1),w1)

(2, [1,1),w2)

(3, [1,1),w3)

p1
[−∞,3),[1,∞)

(1, [1,∞),w1)

(2, [1,∞),w2)

p2
[3,∞),[1,∞)

(3, [1,∞),w3)

(4, [1,∞),w4)

p3

(c) Insert key 4

Figure 4.3. MVBT problem scenario. Insertion of key 4 causes an invalid
split. The format of the page header is key range, life span; and the format
of the entries is (key, life span, data).

Although we have concentrated on queries with a fixed version (that
is, x/−/point queries, see Section 2.3), the MVBT can also be modi-
fied so that version-range queries (x/−/range queries) can be performed
efficiently on the index structure. The modifications are explained by
van den Bercken and Seeger [10]. In practice, page identifiers of temporal
predecessor pages are added to each page. A page p′ is a said to be the
temporal predecessor of page p if the live entries of p′ were copied to p
during a version-split operation; that is, if the key ranges of p and p′

overlap and the deletion time of p′ is the creation time of p.
When the page identifiers of temporal predecessor are maintained,

queries that target ranges of versions can be processed as follows. First,
the pages that cover the last version of the queried version range are
located. The preceding versions on the range can then be located by
using the page identifiers of temporal predecessors. It is sufficient to
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allocate space for at most two page identifiers in each page, because each
page of the MVBT index can have at most two temporal predecessors.
This can be verified by enumerating all the possible structure-modification
operations. For more details, refer to the article by van den Bercken and
Seeger [10].

In conclusion, the MVBT structure is an optimal multiversion index
structure, if the root page of the searched version is assumed to be known
(and in practice it can be located with negligible cost), but it has three
shortcomings: the updates created by multi-action transactions cannot be
assigned the same version number, only a single updating transaction can
operate on the index at a time, and the transaction cannot be rolled back.
In the next chapter, we present a redesign of the MVBT algorithms that
allows multiple updates to be performed within the same transaction, so
that each update is assigned the same version, and the transaction can
be rolled back.

4.5 Multiversion Access Structure

Varman and Verma have also described a multiversion index structure
that is optimal according to their definition. Their structure is called the
multiversion access structure (MVAS [92]), and its structure is similar
to the structure of the MVBT. The optimality definition of Varman
and Verma is less restrictive than our definition (Definition 3.3), and
therefore we cannot consider the MVAS to be optimal. To distinguish the
optimality concepts, let us define the optimality of the MVAS separately.
According to Varman and Verma, an optimal multiversion structure has
a cost of O(logBm) MVAS pages to locate a queried key k in a given
version v, where m is the total number of updates in the database history
(or, equivalently, the total number of unique data item entries in the
index). We will call this m-optimality ; that is, we say that the MVAS is
m-optimal. This is in contrast to our required cost of O(logBmv) index
structure pages, where mv denotes the number of data items alive at
version v.

With this altered definition, the MVAS is m-optimal for the query
types we require of multiversion indexes (that is, queries of the type
x/−/point ; see Sections 2.3 and 2.4), and also for single-key and snap-
shot version-range queries (i.e., x/−/range queries, where x is either point
or ∗). Version-range queries for key-ranges (e.g., queries of the type “re-
trieve all data items with keys in the range [k1, k2) that were alive between
the versions v1 and v2”) are however not m-optimal.
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The structure of the MVAS is close to that of the MVBT, with the
following notable exceptions: (1) the key-range of a page can be altered
for later versions, (2) there is no root∗ structure, (3) leaf pages are linked
together in page creation order, and (4) the index incorporates an access
list structure to facilitate version-range queries. These differences will
be discussed in more detail below. In other respects, the MVAS shares
the shortcomings of the MVBT: the version of the index structure must
change after each update, and the structure cannot by updated concur-
rently by multiple transactions.

As described in the previous section, when a structure-modification
operation is triggered in the MVBT on page p, all the involved pages
are version-split before the entries are distributed into new pages. If
necessary, a sibling page p′ is located, version-split, and the entries are
redistributed between the two new pages. The sibling page p′ might still
have usable space left, however. Instead of always creating a copy of
the sibling page p′, the MVAS reuses the physical page p′, and simply
inserts a new router to the parent. The MVAS is thus a multigraph with
possibly more than one edge between its nodes. The searches for previous
versions use the historical router in the index page, and the searches for
newer versions use the new router. This means that the key ranges of
pages can change, and the regions of key-version space that the MVAS
pages cover are not rectangles. While this method does use the space
more efficiently, the asymptotic space cost remains unchanged [92], and
the index structure is a bit more complicated. Nevertheless, a space-
optimization scheme such as this may give some practical benefits, and
it could be applied to the MVBT also, if the structural invariants were
updated.

The MVAS does not have a separate root∗ structure to track the roots
of different versions, but rather uses a single root page like the TSB-tree.
The search tree height is thus the same for each version, and the root-to-
leaf path length cannot become shorter even if entries are deleted from
the current version. The MVAS does track the single root for the current
version separately, so that updates and queries that target the current
version have the asymptotically lower cost of Θ(logBmv) pages.

To facilitate snapshot queries of different versions (i.e., queries that
fetch all the entries that are alive at a given version), the MVAS has sibling
links between leaf pages. The pages are linked to each other in the order
of their creation time, so that a leaf page p has a link to the leaf page p′

if p′ is the next leaf page that is created after p was created. Varman
and Verma do not explicitly define how these links are maintained, but
we assume that the page identifier of the latest leaf page that has been
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created is maintained, and used to locate the page p that needs to be
updated when a new page p′ is created. This adds some complexity to
concurrency control and deadlock avoidance when a latching protocol is
used to protect the integrity of database pages.

The leaf-page links are used to efficiently locate all entries that are
alive between any two specified versions v1 and v2 such that v1 < v2. The
snapshot version-range query (∗/−/range) is composed of two subqueries:
first, the entire set of entries alive at version v1 is queried. This query is
an m-optimal range query, similar to the key-range query in the MVBT
index. After that, the leaf-page sibling links are followed, starting from
the most recently created leaf page that was encountered during the first
subquery. Because the leaf pages are linked in increasing creation order,
all entries that have been created between versions v1 and v2 must be
located in the leaf pages that were created before v2; or in the pages that
were alive at version v1, and thus were processed during the first subquery.
This method is thus an efficient way of locating all the entries that were
alive between the two given versions.

Finally, the MVAS contains a separate index structure called access
list that is used to efficiently locate all the data items with key k that
were alive between two versions v1 and v2. The access list is a separate
index structure that resembles the versioned B+-tree of Section 3.2; that
is, the entries are ordered first by the keys, and then by their versions, in
reverse version order. The different versions of each key are thus clustered
close to each other. Because there is now a total ordering between the
entries in the access list, the leaf pages of the structure can be linked
together, as is often done in B+-trees. The problem of finding all the data
items with key k that were alive between two versions now reduces to
finding the correct version of the entry with key k from the access list
and then traversing the sibling links to locate all the versions between the
queried range. If the correct starting point can be found, this operation
is m-optimal. For this purpose, the entries of the MVAS and the entries
of the access list are linked together with two-way links.

When querying for the history of a key k between versions v1 and v2,
the MVAS index is used to locate the entry that is alive at version v2. The
search then follows the link in this entry to the access list, and traverses
the access list by the sibling links to locate all the versions of the entry
between v1 and v2. However, an entry that was alive during or after
version v1 might have been deleted before version v2, so that the MVAS
search will not find any entry and thus does not find a pointer to the
access list. This entry is still alive at a version v ∶ v1 ≤ v < v2, so it
should be included in the result set of the query operation. In this case,
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the B+-tree index of the access list is used to locate the first entry in the
queried history. The two-way links between the MVAS and the access
list are needed because leaf pages in both structures may be split and the
entries may thus be moved around. The links then need to be followed to
update the references in the other structure. There is also an extra level
of indirection in the MVAS, because an entry may be copied to multiple
pages due to a version-split operation that creates copies of entries with
life spans that cross the split boundary. Only the first entry in the MVAS
contains a link to the access list, and the successive copies of the entry
contain links to the first entry. When the address of an access list entry
changes, it is then sufficient only to change the address in the first MVAS
entry.

There is, however, yet another complication due to the access list.
When entries are added to the access list, some nearby pointer from the
MVAS is followed to locate the correct page of the access list to insert
the corresponding entry there. This is done so that it is not required
to traverse the B+-tree index to locate the correct page. Recall that the
MVAS separately tracks the root page of the current version, so that
update actions have the optimal cost of Θ(logBmv) pages. The access
list size is, however, dependent on the total number of updates performed
in the history, m, and traversing the B+-tree index of the access list thus
requires Θ(logBm) pages. This additional cost would increase the cost of
the update operations above the asymptotically optimal cost. The pages
of the access list therefore have two-way links between parent pages and
child pages, so that leaf pages can be split without having first searched
the path from the root to the leaf page. This means that whenever an
index page of the access list is split, each child page whose pointer is
moved to the new page needs to be updated. In addition to being costly
because there are Θ(B) pages to update, the approach is also problematic
for concurrency control, because the pages all need to be latched at the
same time. Varman and Verma show that the amortized complexity of
this operation is constant, because it can only occur after enough other
operations have been performed [92], and the approach thus retains the
amortized asymptotic optimality of the update actions. Like the TSB-tree
and MVBT, the space complexity of the MVAS (including the access list
structure) is O(n/B) database pages, where n is the number of updates
in the database history [92].

As a conclusion, the MVAS is a structure that is closely related to the
MVBT index. Similarly to the MVBT, transaction rollback and recovery
cannot be optimally performed on the MVAS. There are several differ-
ences in the structures, but all the features of the MVAS could be imple-
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mented on the MVBT as well. The access list structure, while preserving
the asymptotic behaviour of the algorithms, incurs a constant overhead
to the update operations and an occasional high cost when an index page
is split and half its child pages need to be updated. In addition to taking
much time, the index-page-split operation has to latch many pages at the
same time, thus reducing the concurrency of the structure.
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CHAPTER 5

Transactions on the MVBT

As shown in the previous chapter, there are efficient multiversion index
structures available, but there is no single structure that is both optimal
and that can be used in a concurrent transactional environment. We re-
viewed the result by Becker et al. [7, 8] that showed that the multiversion
B+-tree (MVBT) is an optimal multiversion index structure, but it fol-
lows a single-update model, and the update cannot be rolled back. In
this chapter, we present our redesigned MVBT, called the transactional
multiversion B+-tree (TMVBT). The TMVBT adds transactions to the
MVBT by redesigning the structure-modification operations (SMOs) so
that multiple data-item updates can be performed within a single trans-
action, and the updates can be rolled back. The TMVBT structure was
first introduced in our previous article [35]. In the discussion here, we
explain the algorithms in more detail, and provide detailed proofs for the
properties of the structure.

We begin the chapter by describing the implementation of the trans-
action model of Sections 2.5 and 2.6 for the TMVBT in Section 5.1. After
that, Section 5.2 defines the concept of active entries, which is needed for
maintaining the optimality in the presence of multi-action transactions,
and Section 5.3 describes the structure of the TMVBT. In Section 5.4, we
show how the user actions are performed, and in Section 5.5, we describe
the structure-modification operations triggered by the user actions. Fi-
nally, in Section 5.6, we illustrate why we cannot allow multiple updating
transactions to operate on the index concurrently, and in Section 5.7, we
summarize the discussion on the TMVBT index.

5.1 Multi-Action Transactions

We allow two kinds of transactions to operate on the TMVBT concur-
rently: any number of read-only transactions (as defined in Section 2.5)
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and at most one updating transaction (as defined in Section 2.6) at a
time. For reasons explained in Section 5.6, we cannot allow more than
one updating transaction to operate on the TMVBT at a time. Concur-
rent updating transactions are discussed in the next chapter.

In contrast to the MVBT (Section 4.4), each updating transaction
operating on the TMVBT can perform any number of updates, and the
updates all receive the same version. Because only one updating trans-
action can operate on the TMVBT at a time, the commit order of the
transactions is known during the execution of the transactions, and each
data-item update can be directly performed with the correct transaction-
time version. In the context of the TMVBT, we use the term version to
denote these transaction-time instants. This does mean, however, that
the version assigned to an updating transaction cannot be based on the
real time instant of the commit action, because that is not known at the
beginning of the transaction. We thus assume that the versions used in
the TMVBT are increasing integer numbers that are assigned at the be-
ginning of the updating transaction. The versions can be based on an
increasing counter value or they can be based on the real-time instant of
the begin action of the transaction, as long as they are increasing values.
For simplicity, in the discussions in this chapter, we assume that the ac-
tive version variable (defined below) is based on an integer value that is
incremented by one each time a new updating transaction begins.

Like the MVBT, the TMVBT also maintains a commit version vari-
able vcommit that records the version of the latest committed transaction.
The TMVBT also maintains an active version variable vactive that holds
the version of the current updating transaction. If there is no active up-
dating transaction operating on the index, vactive = vcommit . When an
updating transaction starts, the active version variable is incremented,
vactive ← vactive + 1. When the single updating transaction commits,
the commit version is incremented to match the active version variable
vcommit ← vactive . These version variables therefore tell whether there is an
active updating transaction running on the TMVBT index: if the active
version variable is larger than the commit version variable, then there
is an updating transaction running, and no other updating transaction
can begin. Read-only transactions can always target any version that is
less than or equal to the commit version vcommit , unless purging of old
versions is implemented (see discussion in Section 4.4 and in the MVBT
articles [7, 8]). In that case, the minimum version that can be accessed
must also be maintained in a separate variable.

The transaction model used for the TMVBT is the transaction model
explained in Sections 2.5 and 2.6. The log records written by a transac-
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tion T for the actions presented here must also contain the transaction
identifier id(T ). Because the common form of log records ⟨T , action,
. . .⟩ already contains the identifier T , we use T to mean that the trans-
action identifier id(T ) is written in the log records. The control actions
of the transaction model are implemented as shown below; the query and
update actions are discussed in Section 5.4.

• begin-read-only(version v): begins a new read-only transaction;
this action takes a short-duration read lock on the vcommit variable,
checks if v ≤ vcommit , and records the value snap(T ) ← v for the
transaction. If v > vcommit , the transaction is aborted.

• begin-update: begins a new updating transaction T ; this ac-
tion takes a commit-duration write lock on the active version vari-
able vactive , increments the variable vactive ← vactive + 1, and assigns
it to the transaction: id(T ) ← vactive . A redo-undo log record ⟨T ,
begin, v, vactive⟩ is written, with v denoting the previous value of
the variable vactive , but the log is not forced to disk.

• commit-update: commits the active updating transaction T by
(1) taking a commit-duration write lock on the committed ver-
sion variable vcommit , (2) updating the variable vcommit ← vactive ;
(3) writing a log record ⟨T , commit, vcommit⟩; (4) forcing the log
onto disk; and (5) calling the release-version action.

• release-version: this action does nothing, because the updating
transaction has already assigned correct versions to each updated
data item entry. If the versions of the TMVBT index should be
timestamps that are based on the time of the commit action (which
is not known at the beginning of the updating transaction), then
this action can perform the necessary changes to update the entries.

• abort: labels the updating transaction as aborted and starts the
backward-rolling phase. This action writes the log record ⟨T ,
abort⟩.

• finish-rollback: finishes the rollback of an aborting transaction
by decrementing the active version variable vactive ← vactive − 1,
writing a log record ⟨T , finish-rollback, vactive⟩, and forcing the
log to disk.

All the update actions of an updating transaction are logged using
the write-ahead logging protocol as in ARIES [66]. In addition to the log
records described above, redo-undo log records are written for an insert
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action and a delete action, while redo-only log records are written for
an undo-insert action and an undo-delete action. These log records
are described in Section 5.4. A read-only transaction does not create
any log records; it only stores transient control information in the active-
transactions table when it begins, and removes that information when it
commits.

5.2 Active Entries

Recall from Figure 4.3 on page 68 the problem of inserting multiple data-
item entries into the MVBT index with the same version. When per-
forming a version-split operation on page p, a new copy p′ of the page is
created and the life span of the original page p is truncated to the cur-
rent version and the page is left as it is for use in historical queries. If
the page p was created by the same transaction that triggers the version
split, the life span of the page will degenerate into an empty range, and
the page will thus not be part of any search tree in the database. In these
situations, the key split can be performed directly on the page p, without
applying the version-split operation first.

Let us now define the concepts of active entries and active pages to
classify the situations where a version-split operation is not required and
in fact must not be performed. Remember that the single updating trans-
action always has the version vactive as its identifier and uses that version
to stamp the data-item updates and structure-modification operations.

Definition 5.1. An active entry (or active page, respectively) in the
TMVBT index is an entry (page) that has a life span of [vactive ,∞). An
active entry (page) has been created earlier on by the same updating
transaction. Entries (pages) that are not active are called inactive entries
(inactive pages). ◻

As stated in the previous chapter, read-only transactions may only
read versions that have a commit-time version of at most vcommit . This
leads to the following observation:

Invariant 5.2. Read-only transactions in the TMVBT index only read
inactive entries and pages. Active entries and pages are only seen by the
single active updating transaction.

If the active updating transaction is deleting an active entry, the entry
can be physically removed from the index, instead of changing its life
span. This does not invalidate partial persistence, because the active
entry was created by the same transaction, and thus did not exist before
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the updating transaction first inserted it. Updates that are internal to the
transaction are not visible outside the transaction and must not consume
space in the index.

Invariant 5.3. When a single updating transaction T deletes an active
entry (created by T ), the entry is physically removed from the TMVBT
index. Similarly, if T updates an active entry it physically removes the
old entry and creates a new active entry to replace the old one.

When performing a version-split operation on a page p at version v in
the original MVBT index, Becker et al. suggested that the entries that
are left in page p may be left unmodified [8], so that the life spans of the
entries ei that were alive at version v remain unbounded on the above;
that is, of the form [vi,∞), where vi < v. This does not affect any queries,
because only historical queries targeting versions v′ < v will ever end up in
the historical page p; thus, even if an entry ei is deleted by a transaction
with a version v′′ > v, the queries targeting those newer versions will never
encounter the now-outdated entry ei on the historical page p. However, if
a transaction T stores a previously used path as a saved path (see p. 91)
and reuses the path later on, it is possible that the pages in the saved path
are no longer valid. The transaction T cannot ascertain the validity of the
pages unless the consistency of the life spans of all the entries and pages
is maintained, so that the deletion times of entries in historical pages are
set to the deletion time of the historical page. In the TMVBT index, we
explicitly require that the life spans of entries that are left on a historical
page are cropped so that they end at the version during which the page
was split:

Invariant 5.4. When a page p in the TMVBT index is version-split
into a new page p′ at version vactive , all live entries (k, [v,∞),w) such
that v < vactive are processed as follows: a live copy (k, [vactive ,∞),w) is
created and inserted into the new live page p′, and the live entry at page p
is changed to the historical entry (k, [v, vactive),w). All active live entries
of the form (k, [vactive ,∞),w) are physically moved to the new page p′.

This invariant is required in order that the key-version regions of all
the entries of a given level of the TMVBT index do not overlap, as shown
in Figure 4.2 on page 63. By adhering to these rules, we can also obtain
the following lemmata:

Lemma 5.1. Active pages in the TMVBT only contain active entries.

Proof. An active page is a page that was created by the active updat-
ing transaction. When the transaction commits, the page immediately
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becomes inactive. When an active page p was created, all the live en-
tries that were copied to it were changed so that their life spans start at
the split boundary (i.e., at version vactive), thus making the copies of the
entries active. If the active entries are changed in any way by the same
transaction, they will be physically deleted or replaced by new active
entries, as per Invariant 5.3. ◻

Lemma 5.2. Active pages have at most one parent.

Proof. Multiple parents in a multiversion index are caused by multiple
routers to the same page p in the index pages above the page p. When
an active page p is created, a new index entry ip is inserted to the parent
page p′. Note that the index entry ip is also active, and will remain
active until the current active transaction commits. When the current
transaction commits, both the entry ip and the page p will immediately
become inactive. By Invariant 5.4, active entries are physically moved
during a version-split operation. If the parent page p′ is version-split
before the active transaction commits, the index entry ip is physically
moved to the new page, thereby preventing the creation of new copies
of ip. Because there can be only a single index entry ip pointing to an
active page p, active pages can only have a single parent. ◻

All the entries of active TMVBT pages have the same life span of
[vactive ,∞). This holds for both leaf pages and index pages, and is illus-
trated in Figure 5.1. Because of this fact, we can in fact disregard the life
spans of entries when performing an operation on active pages: in effect,
we can treat active pages as if they were pages in a non-versioned B+-tree
index. The extended TMVBT algorithms are based on this observation.
The algorithms themselves are explained in detail in Section 5.5.

For an example, let us review the problem scenario in MVBT as de-
picted in Figure 4.3 on page 68. In the TMVBT, the page p1 is active,
and thus it can be key-split directly without version-splitting it first. The
operation of the same transaction, executing on the TMVBT index, is
shown in Figure 5.2.

5.3 Transactional Multiversion B+-tree

As we explained in the previous chapter, only the MVBT index [7, 8] can
be considered optimal when updating transactions follow a single-update
model, although the MVAS of Varman and Verma has access cost guar-
antees that are close to optimal (m-optimal, see Section 4.5). We have
chosen the MVBT as the basis of our work, instead of the MVAS, be-
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Figure 5.1. Active entries in the TMVBT index. The index page contains
three index entries with routers to pages p1, p2, and p3.

cause (1) the page reusing rules of the MVAS make the structure of the
pages more complicated without improving the space complexity bounds,
(2) the lack of a separate root∗ structure makes history queries less effi-
cient, and (3) the access list incurs a high maintenance cost. Nevertheless,
the improvements presented in this chapter could also be implemented on
the MVAS index structure.

The transactional multiversion B+-tree (TMVBT) index, which was
first introduced in our previous article [35], is a directed acyclic graph with
multiple root pages that is based on the multiversion B+-tree of Becker
et al. [7, 8]. The original MVBT structure was reviewed in Section 4.4.
The different roots of the TMVBT index are stored in a root∗ structure,
exactly as in the MVBT index. The page format in the TMVBT is
identical to that of the MVBT, with the addition of recovery information
required for our ARIES-based recovery algorithm, such as a Page-LSN
field that stores the log sequence number (LSN) of the log record of the
latest update on the page. We assume that each page p explicitly stores
the life span vr(p), the key range kr(p), and also the height of the page.
The height of a page is one for all leaf pages, and greater for index pages.

As discussed in Section 4.4, the MVBT has three variables that deter-
mine how many live entries there are in each page and how often pages
are split or merged. These variables are used in the TMVBT in the
same meaning. The variable min-live determines the minimum number of
live entries that must be present in each live page (see Invariant 4.9 on
page 65), and variables min-split and max-split control how many live en-
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(b) Insert keys 2–3

[−∞,3),[1,∞)

(1, [1,∞),w1)

(2, [1,∞),w2)

p1
[3,∞),[1,∞)

(3, [1,∞),w3)

(4, [1,∞),w4)

p2

(c) Insert key 4

Figure 5.2. Key split without version split in the TMVBT. A key-split is
triggered by the insertion of key 4. The leaf page contains three entries,
namely e1, e2, and e3. The format of the page header is key range, life
span; and the format of the entries is (key, life span, data).

tries must be present in each live page created by a structure-modification
operation. Becker et al. use the term weak version condition to refer to
the first requirement, and the term strong version condition to refer to
the second [7, 8].

The variables min-split and max-split are defined as min-split = min-live+
s, and max-split = B − s, where s is a split tolerance variable that deter-
mines how many actions must at least be performed on the page before
a new structure-modification operation is required. If the strong version
condition holds, then at least s entries can be deleted from the page be-
fore the number of live entries falls below min-live, and similarly at least s
entries can be inserted to the page before the page becomes full. In effect,
s is used to prevent thrashing. When a page has more than max-split en-
tries immediately after a version-split, it will be key-split into two pages.
We thus require that max-split ≥ 2 × min-split so that the two new pages
will have at least min-split entries each.

Invariant 5.5. All the live pages at level l that are involved in a
structure-modification operation that targets a page p at level l must
contain from min-split to max-split live entries immediately after the SMO.

Note that these requirements do not need to hold for the parent page q
at level l+1, because only a small constant number of updates is applied to
it during any SMO. The router entries in a parent page are only updated
by the SMOs at a lower level, so the updates performed on the parent
page q correspond to inserting or deleting entries from a leaf page.
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The values chosen to the variables affect the size of the index structure
and the frequency of structure-modification operations. It is theoretically
possible to set min-live as high as B/2, if s = 0, but this means that
thrashing is not prevented. The upper limit of the value of s is B/3,
but with this setting min-live = 0 and thus the optimality constraints are
lost. For the discussion in this dissertation, we assume that the following
values are used: min-live = 1/5B, s = 1/5B, min-split = min-live + s = 2/5B,
and max-split = B − s = 4/5B.

Although the representations of the variables differ from the definition
used by Becker et al., we can show that the variables are the same as in
the MVBT article [8]. Becker et al. require that min-live = d = B/k,
min-split = (1+ε)×d and max-split = (k−ε)×d, where k and ε are variables
that can be selected. If we assign s = εd, we obtain min-split = d + εd =
min-live + εd = min-live + s, and max-split = kd − εd = B − s, which are the
definitions used here.

For optimality of the index structure, we wish to keep the structure
of the TMVBT index as close to the MVBT index as possible. Most
importantly, we wish to maintain Invariant 4.9, so that all pages of each
search tree Sv contain at least min-live entries that are alive at version v,
for all versions v. Let us first restate Invariant 4.8 for the TMVBT:

Invariant 5.6. All inactive entries in the TMVBT pages remain in
place. They are never moved to another page. Only the deletion time of an
inactive entry may be changed, always to the current active version vactive .
Active entries in the TMVBT pages may be physically deleted, updated,
or moved to another page (see Invariants 5.3 and 5.4).

This means, in practice, that the structure of the search tree Sv of a
version v can only change when v = vactive . After T commits, version v
becomes inactive, and the structure of the search tree Sv becomes static.
By this we mean that the set of pages that forms the search tree Sv
can no longer change, and the entries that are alive at version v are
never physically deleted or moved to another page. If we design the
algorithms in such a way that the search tree of the active version is
balanced (Definition 4.3) in all situations, this implies that search trees
of all versions are balanced, and thus optimal. This follows from the fact
that the search tree Sv of the active version is balanced immediately before
the active transaction commits and thus also at the moment version v
becomes inactive. Furthermore, because inactive search trees are static,
Sv will always remain balanced. We will show in the next sections that
the TMVBT algorithms maintain Invariant 4.9 for the TMVBT. This,
together with the observation that all the root-to-leaf paths in the search
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tree Sv are always of the same length, implies that the balance conditions
of the active-version search tree are also maintained.

Invariant 5.7. Invariant 4.9 holds for the TMVBT index. That is, for
all versions v and all pages p, page p contains at least min-live entries that
are alive at version v; or p is a root page of Sv, in which case it contains
at least 2 entries that are alive at version v; or p is the only page of Sv
and contains at least one entry that is alive at version v; or p is not part
of the search tree Sv and therefore contains no entries that are alive at
version v.

Figures 5.3–5.5 show an example of the TMVBT page operations. In
this illustrative example, the index is structurally consistent and balanced,
with suboptimal settings of min-live = 1 and s = 1 for a page capacity ofB =
5. All the following examples have been generated by our visualization
software TreeLib (see Chapter 7). Pages p1, p2, and p4 are not shown
in the figures, because p1 and p2 are used as database information pages,
and page p4 is the root page of the root∗ index.

[−∞,∞), [1,∞)

([−∞,4), [1,∞), p3)

([4,∞), [1,∞), p5)

p6

[−∞,4), [1,∞)

(1, [1,∞))

(2, [1,∞))

(3, [1,∞))

p3
[4,∞), [1,∞)

(4, [1,∞))

(5, [1,∞))

(6, [1,∞))

(7, [2,∞))

(8, [2,∞))

p5

Figure 5.3. Example of a TMVBT index after insertions. The page
header shows the page identifier followed by the key range and version of
the page; the format of index-page entries is (key range, life span, page
identifier); and the format of leaf-page entries is (key, life span, data), but
the associated data has been left out for clarity. This TMVBT has been
created by transaction T1 inserting keys 1–6 and transaction T2 inserting
keys 7 and 8.

In Figure 5.3, the index contains six inactive live entries inserted by
transaction T1 (entries with keys 1–6), and two active entries inserted by
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transaction T2 (entries with keys 7 and 8). During the execution of T1,
the leaf page p3 was key-split into pages p3 and p5, and a new root page p6
was created, thus incrementing the height of the search tree S1 by one.

[−∞,∞), [1,∞)

([−∞,4), [1,∞), p3)

([4,∞), [1,2), p5)

([4,7), [2,∞), p7)

([7,∞), [2,∞), p8)

p6

[−∞,4), [1,∞)

(1, [1,∞))

(2, [1,∞))

(3, [1,∞))

p3
[4,∞), [1,2)

(4, [1,2))
(5, [1,2))
(6, [1,2))

p5
[4,7), [2,∞)

(4, [2,∞))

(5, [2,∞))

(6, [2,∞))

p7
[7,∞), [2,∞)

(7, [2,∞))

(8, [2,∞))

(9, [2,∞))

p8

Figure 5.4. TMVBT after inserting a data item with key 9. The format
of the figure is the same as in Figure 5.3. White rectangles denote live
pages, and gray rectangles denote dead pages. Transaction T2 has caused
a version-split on p5 by inserting key 9.

Figure 5.4 shows the result of a version split after transaction T2 tried
to insert key 9 to the full page p5. The page p5 was version-split into
pages p7 and p8. The historical entries are left stored in the dead page p5,
and active copies of the entries have been created into pages p7 and p8.
Note that all the active entries have been physically moved away from
page p5.

Figure 5.5 shows the status of the database after transaction T2 has
deleted entries 4–9. Deleting the active entries has caused the number of
live entries in pages p7 and p8 to fall below min-live, so the pages have
been consolidated by merging them. In more detail, first p7 was merged
with p8 by moving the active entries of p7 to p8, which caused p7 to be
deallocated. Note that also the active router to p7 was deleted from the
parent page p6. When the rest of the entries in p8 were deleted, page p8
was further merged with p3 by killing the page p3 and by creating active
copies of the live entries in p3 into p8. As we will show in Section 5.5, the
algorithms actually created a new live copy of p3 when killing it (call it
p9), and the active live copy p9 was then merged with p8, causing p9 to
be deallocated. At this point p8 was the only live page at level 1, so the
height of the current-version search tree S2 was decremented by making
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(2, [2,∞))

(3, [2,∞))

p8

Figure 5.5. TMVBT after deleting most of the entries. Transaction T2
deleted keys 4–9, thus shrinking the current-version search tree to a single
page.

p8 the root page of version 2. The auxiliary structure root∗ now contains
page identifiers of root pages p6 (for version 1) and p8 (for version 2).

A more diverse example of a TMVBT index is shown in Figures 5.6–
5.8, with the same settings used as in the previous examples. This ex-
ample has been generated by our visualization software with the action
sequence given below:

• Transaction T1: insert data items with keys 1–9 (Figure 5.6).

• Transaction T2: delete data items with keys 7–9 (Figure 5.7); insert
data items with keys 10–15 (Figure 5.8).

The transactions on this TMVBT index have induced the following
structure-modification operations:

• The first six insertions by transaction T1 have triggered a key-split,
splitting page p3 to p3 and p5. At this point, the root page p6 was
created to hold the routers to these pages, and root∗ was updated
by replacing the page identifier stored for version 1 from p3 to p6.

• The further three insertions by T1 have triggered another key-split
on p5, creating the new leaf page p7. The situation after these
SMOs is depicted in Figure 5.6.

• After T2 has deleted the entries with entries 7–9, a page-merge
operation was triggered on p7 to merge the page with p5. Because
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Figure 5.6. Example of a TMVBT index after insertions. In this figure,
transaction T1 has inserted keys 1–9.

both of these pages were inactive, they were first killed, creating
two new active pages. These were then merged into the active leaf
page p8. The situation after this SMO is shown in Figure 5.7.

• The insertions by T2 further induced two page splits; first on the
active page p8, creating the active page p9; and then on p9, thus
creating page p11.

• Insertion of the router to p11 to the parent page p6 caused a split
operation on the parent page p6. Because p6 was inactive, it was
first version-split into p10. At this point p10 had enough space
to hold the router to p11, so p10 was not further key-split into
two pages. The page identifier p10 was inserted to the root∗ to
mark that the root page of version 2 differs from the root page of
version 1. The situation after these SMOs is shown in Figure 5.8.

Figure 5.8 shows that the page p3 containing entries with keys 1–3 is
shared by both roots of the TMVBT index. Note that page p3 is alive but
not active, because vactive = 2 (assuming that transaction T2 has not yet
committed), and p3 has a life span other than [2,∞). It is thus possible
for this page to have more than one parent. The pages p8 to p11 are active
and only contain entries of the most recent version. Also note that the
index page p10 is active even though it contains a router to the inactive
page p3, because the router itself is active.

In the previous chapter, we briefly discussed efficient version-range
queries (i.e., x/−/range queries) on the MVBT index structure. These
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Figure 5.7. Example of a TMVBT index after deletions. In this figure,
transaction T2 has deleted keys 7–9.

were introduced by van den Bercken and Seeger [10]. Even though the
TMVBT is based on the MVBT index, the most efficient LinkRef tech-
nique cannot be used with the TMVBT index. This is because the tech-
nique relies on storing links to historical pages that temporally precede
a page p. In the MVBT, each page can have at most two temporal pre-
decessors (see the discussion in the end of Section 4.4), and the links to
those pages can therefore be tracked. In the TMVBT, pages can have an
unlimited number of temporal predecessors, because merging active pages
combines the temporal predecessors of the merged pages.

5.4 User Actions

Having defined the transactions and the structure of the TMVBT index,
we will now describe the implementation of the user actions in this section.
As a general rule, we assume that the physical consistency of the database
during normal processing is maintained by short-duration latching [66]
of pages, so that the server process or thread that executes a transac-
tion keeps a page p read-latched for the time a read action is performed
on p, and write-latched for the time an update action is performed. We
also assume that the buffer manager applies the standard steal-and-no-
force buffering policy [32]. These assumptions are in accordance with the
ARIES recovery algorithm [66]. No logical key-level locking is required
for the TMVBT, because (1) for read-only transactions, the historical
versions that the read-only transactions read are never deleted from the
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Figure 5.8. Example of a TMVBT index after more insertions. In this
figure, transaction T2 has inserted keys 10–15.

index; and (2) for updating transactions, there can be only one updating
transaction operating on the index at a time.

The global version variables vcommit and vactive are maintained in the
permanent database and their reading and writing is protected by locking.
A begin-read-only action acquires a short-duration read lock on vcommit

for reading its value, and a commit-update action acquires a commit-
duration write lock on it for incrementing its value. A begin-update
action acquires a commit-duration write lock on vactive , thus guaranteeing
that at most one updating transaction is active at a time. The decrement
of vactive in a finish-rollback action is performed under the protection
of that lock. The begin-read-only and commit-read-only actions do
not write any log records, because read-only transactions do not involve
any logging.

In a fully dynamic index structure in which any inserted data can be
physically deleted at any time, latch-coupling (called crabbing by Gray
and Reuter [32]) is the standard way to guarantee the validity of traversed
search paths in all circumstances. In a general situation, the validity of
the traversed path can be ascertained by releasing the latch on the parent
page only after a latch on a child page has been acquired. Latch-coupling
is deadlock-free if the latches are acquired in a predefined order, such as
first top-down, then left-to-right. However, in the case of the TMVBT
index the fact that inactive data always remains in place (Invariant 5.6),
together with our assumption that a read-only transaction only reads
inactive data (Invariant 5.2), implies that the query and range-query
actions of read-only transactions do not need to perform latch-coupling,
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and a parent page may be unlatched during tree traversal before acquiring
a latch on the child page.

Accordingly, an action query(k) in a read-only transaction that is
reading the version snap(T ) can be implemented as follows. First, the
root page for version snap(T ) is located from root∗ and read-latched.
Then the TMVBT is traversed using read latches without latch-coupling
until the leaf page p is found that covers key k and version snap(T ); that
is, k ∈ kr(p) and snap(T ) ∈ vr(p). At each index page p′ on the traversed
path, the next page on the path is the child page p′′ of p′ with k ∈ kr(p′′)
and snap(T ) ∈ vr(p′′). Once the identifier of the child page p′′ has been
determined, the read latch on the parent page p′ is released and the child
page p′′ is read-latched. When the correct leaf page p has been found, the
proper entry (k, [v1, v2),w) with v1 ≤ snap(T ) < v2 is located, and page p
is unlatched.

An action range-query([k1, k2)) is implemented similarly, except
that for each index page p′ in the search path we need to traverse all
subtrees rooted at each child page p′′ such that [k1, k2) ∩ kr(p′′) ≠ ∅ and
snap(T ) ∈ vr(p′′). If there are more than one such child page p′′, then the
page identifiers of all but the first child page are pushed into a stack, and
the traversal proceeds to the subtree rooted at the first child. When a
subtree has been searched, a page identifier (if any) is popped from the
stack, the corresponding page is read-latched, and the search is continued
at the subtree rooted at that page. Because the inactive entries and pages
are static (Invariant 5.6), the pages do not need to be latched while the
page identifiers are queued in the stack. Latching is used only to prevent
inconsistent reads if the updating transaction needs to modify a page at
the same time the read-only transaction is reading it.

The following theorem follows directly from the definitions of the query
actions of the read-only transactions and from the fact that only one
updating transaction can be active at a time:

Theorem 5.3. The TMVBT algorithms produce a snapshot-isolated
schedule [11] for the transactions.

Proof. Firstly, because there can only be a single active updating
transaction that operates on the TMVBT at a time, the updating trans-
actions are processed in a fully serialized manner, thus fulfilling the re-
quirements for snapshot-isolated transactions. Secondly, read-only trans-
action only read committed data that is never deleted, so they also form
snapshot-isolated schedules. ◻

An updating transaction begins with the begin-update action and
ends with the commit-update action, as described in Section 5.1, unless
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the transaction is aborted and rolled back. The query and range-query
actions are the same as for read-only transactions, except that they now
target the version vactive , and the actions may read active entries and
pages. As with read-only transactions, these actions in an updating trans-
action do not write log records, because they do not create changes to the
database that would have to be redone or undone during restart recovery.

For efficiency, we assume that the TMVBT index records the page
identifier of the root page of version vactive separately so that the queries
in updating transactions do not need to use the root∗ structure to find it.
Similarly, because read-only transactions reading the most recent com-
mitted version always target the version vcommit , the page identifier of the
root page of that version is also maintained separately.

Theorem 5.4. When the root of the search tree of version v is known,
the cost of a single-key query action in the TMVBT targeting version v is
Θ(logBmv) pages, and the cost of the key-range query action for version v
is Θ(logBmv + r/B) pages of the TMVBT structure, where mv denotes
the number of data items that are alive at version v, r is the number of
entries returned by the range query and B is the page capacity.

Proof. Assuming that Invariant 5.7 holds, each page of the TMVBT
that is part of the search tree Sv has at least min-live entries that are alive
at version v. The proof is therefore the same as the proof of Theorem 4.2.
We will show later on in Lemmas 5.5, 5.6, and 5.7 that all the SMOs
maintain Invariant 5.7, thereby confirming this result. ◻

We assume that all TMVBT page traversals maintain a saved path [60,
61]; that is, an array path local to the server process or thread in question
and indexed by the height of pages. An entry path[i] holds the page iden-
tifier, key range, life span, and Page-LSN of the page that was located
at level i when traversing the root-to-leaf path. The saved-path concept
can be used to accelerate the user actions by starting the traversal at the
lowest-level page in the saved path that, according to the saved informa-
tion, covers the queried search space. This page is known to be the correct
page to start the tree traversal, because (1) for read-only transactions, the
inactive data is never moved away from the pages; and (2) for updating
transactions, there can be no other updating transaction that would in-
validate the data in the saved path of the current updating transaction.
This holds regardless of whether a concurrent purging process is allowed,
because the purging process only deletes pages that are part of historical
versions that are no longer queried.

For the write(k,w) and delete(k) actions of the updating transac-
tion, the TMVBT is traversed using read latches without latch-coupling
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as for the query(k) action of the updating transaction, except that the
target leaf page p is write-latched. If the target leaf page p can accommo-
date the update, then the update is applied on page p directly; otherwise
a structure-modification operation is performed before the action can pro-
ceed. After the update has been applied, a redo-undo log record for the
action is generated, its LSN is stamped in the Page-LSN field of p, and
the write latch on p is released.

In the write(k,w) action, if the index contains a live entry of the form
(k, [v,∞),w′), then that entry is logically deleted by either replacing it
with a new entry (k, [v, vactive),w′), if v ≠ vactive ; or by physically removing
the old entry, if v = vactive . After the existing entry has been deleted, a
new entry (k, [vactive ,∞),w) is inserted into the page p. The page p
can accommodate this update action, if the operations explained above
can be carried out without the page overflowing. The redo-undo log entry
written for this action contains the version and data of the replaced entry,
in addition to the version and data of the inserted entry. The log entry
written by an updating transaction T is thus ⟨T , write, p, k, vactive , w, v,
w′, n⟩, where n is the log sequence number of the previous not-yet-undone
action of T , and v and w′ are null if the index contained no live entry
with the key k.

In the case of the delete(k) action, page p can accommodate the up-
date if replacing the entry (k, [v,∞),w) by (k, [v, vactive),w) (in the case
v ≠ vactive), or physically removing the entry (k, [vactive ,∞),w) (other-
wise) does not decrease the number of live entries in the page below the
required minimum number of live entries, min-live. An updating transac-
tion T writes a redo-undo log record ⟨T , delete, p, k, vactive , v, w, n⟩ for
this action.

When the target leaf page p cannot accommodate the update, struc-
ture modifications are needed. These operations are explained in Sec-
tion 5.5. For writes, the operation split-page is called before the write
action can proceed. For deletes, the page p needs to be consolidated by
the operation merge-page before the entry can be deleted from the page.
When the structure-modification operations are initiated, the page p,
recorded on the saved path, is left write-latched. After the operations,
the saved path contains the correct write-latched leaf page p′ whose key
range covers the key k. As with the earlier situation, the update is now
performed on page p′, a redo-undo log record is generated, the LSN is
stamped on p′ and page p′ is unlatched.

As will be explained in the next section, the structure modifications
(page splits or merges) are applied in a top-down, level-by-level man-
ner, logging the structure modification done at each level using a single
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redo-only log record. Each of these structure modifications involves a
maximum of five pages at two adjacent levels. The sequence of struc-
ture modifications results in a target leaf page that can accommodate the
insert or delete action in question.

An undo action, undo-write(r) or undo-delete(r), is performed as
a physical undo if possible and as a logical undo otherwise [66]. For a
physical undo, the page mentioned in the log record r is write-latched
and the Page-LSN field is examined. If the Page-LSN field still contains
the LSN of r, or if the page contents show that the page is the correct tar-
get for the undo action and the page can accommodate the undo action,
then the undo action is performed on the page, a redo-only log record is
generated, its LSN is stamped in the Page-LSN field of the page, and the
page is unlatched. If the page mentioned in the log record r cannot be
seen to be the correct target for the undo action or if the page cannot
accommodate the undo action, a logical undo is performed, starting with
a search for the key mentioned in r and performing any structure modifi-
cations that may be necessary to make the target page accommodate the
undo action. The undo actions write redo-only compensation log records,
as dictated by the ARIES algorithm. If the page cannot accommodate
the undo action, the page is first split or merged after write-latching it,
as with the forward-rolling write and delete actions.

The undo-write action reads the log record ⟨T , write, p, k, vactive ,
w, v, w′, n⟩ created by the write action that is to be undone. Let page p′

be the current correct leaf page that covers key k at version vactive . As
discussed above, p′ is either p or it has been located with a root-to-leaf
traversal of the TMVBT index structure. This action locates the active
entry (k, [vactive ,∞),w) from page p′ and physically removes it. If v and
w′ are not null, then this action furthermore restores the previous en-
try. If v < vactive , the currently dead inactive entry (k, [v, vactive),w′) is
located (if it is still present on p) and restored to life by replacing it with
(k, [v,∞),w′). If v = vactive , or if p′ has been version-split so that the his-
torical entry (k, [v, vactive),w′) is not present on p′, then the active entry
(k, [vactive ,∞),w′) is inserted to page p′ to undo the write action. The
leaf page p′ can accommodate the undo action if the operations described
can be carried out without the page overflowing, and without the number
of live entries on the page decreasing below min-live. The action finishes
by writing a redo-only compensation log record ⟨T , undo-write, p′, k,
vactive , v, w′, n⟩.

The undo-delete action examines the log record ⟨T , delete, p, k,
vactive , v, w, n⟩ created by the delete action, and locates the correct leaf
page p′. If v < vactive , then this action locates the logically deleted entry
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(k, [v, vactive),w), and replaces it with (k, [v,∞),w). If v = vactive , or if the
logically deleted entry (k, [v, vactive),w) is no longer present on p′, then
this action inserts a new active entry (k, [vactive ,∞),w) into page p′. The
leaf page p′ can accommodate the undo action if the operation described
above can be performed on p′ without it overflowing. The action finishes
by writing a redo-only compensation log record ⟨T , undo-delete, p′, k,
vactive , v, w, n⟩.

5.5 Structure-Modification Operations

In this section, we will describe the structure-modification operations
(SMOs) used with the TMVBT index. The two main operations de-
scribed here, split-page and merge-page, are triggered by the user ac-
tions described in the previous section. For convenience, we will use the
same notation for entries in both index and leaf pages. The format of
an index-page entry is (kr(p), vr(p), p); that is ([k1, k2), [v1, v2), p), where
kr(p) = [k1, k2) is the key range and vr(p) = [v1, v2) is the life span of the
page p. A leaf-page entry (k, #–v ,w), for key k and data-item value w, that
is alive at versions in the range #–v = [v1, v2), is represented by the tuple
([k, k+), [v1, v2),w), where k+ is the key immediately following key k in
the key space (for databases that store integer keys, k+ = k + 1). In this
way we can use the same algorithms for manipulating both the leaf pages
and the index pages.

The convention in the TMVBT structure-modification operations is
that each SMO transforms a balanced (Definition 4.3) TMVBT index into
another balanced TMVBT. Each operation is logged with a single redo-
only log record, so that structure modifications are never undone when
a transaction aborts or system fails [40, 41]. The structure-modification
operations are performed top-down, starting from the highest page on the
search path that requires splitting or merging.

The actual implementation of the operations traverses the search path
bottom-up in order to determine which kind of a structure modification
is needed at each level, yet without performing any modification. When
a parent page which does not need any modification is encountered, the
search path is traversed top-down, and the structure modifications are
performed level-by-level, logging each operation with a single redo-only
log record. The search path state is guaranteed to remain valid through-
out the operations because only one updating transaction can be active
at a time. The information about the traversed search path stored in the
saved path can thus be trusted. For clarity, the algorithms presented in
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this section only describe the structure-modification operations applied
at a single level.

Both of the SMOs split-page and merge-page are based on the page-
killing operation kill-page. Page killing is not a separate SMO, but it
is used in both of the actual SMOs. This operation creates a live copy
of a page p, and marks the original page p as killed. The operation is
described in Algorithm 5.1. The page p and its parent q (located from
the saved path) are both write-latched before the operation is performed.
As discussed above, we assume that all required SMOs have been applied
to the parent page q, so that q can accommodate the entry inserted by
the algorithm.

kill-page(p, q):
1 p′ ← allocate, write-latch, and format a new page
2 move all active live entries of p to p′

3 create active copies of all inactive live entries of p to p′

4 kill all live entries of p
5 r ← find the router ([k1, k2), [v,∞), p) to p from q
6 replace the retrieved router r in q with ([k1, k2), [v, vactive), p)
7 insert a new router ([k1, k2), [vactive ,∞), p′) to q
8 return p′

Algorithm 5.1. Page-killing algorithm. The algorithm assumes an inac-
tive page p and its parent page q, kills the page p, creates an active live
copy p′ of p and updates the routers in the parent page q.

The page-killing operation begins by allocating a new page p′, write-
latching it and formatting it as a TMVBT page. All the live entries of
page p are now either copied or moved to page p′ in such a way that
all active entries are physically moved to p′, and all inactive live entries
are copied to p′. The life spans of the copied entries are split at version
vactive , so that a life span [v,∞) is changed to [v, vactive) in the entry that
remains in page p and to [vactive ,∞) in the new entry created to page p′.
The logical state of the database at all versions prior to vactive is thus
maintained in page p, but the page p is no longer part of the search trees
of versions v ≥ vactive . The router to page p in the parent page q must be
updated by setting its end version to vactive , and the router to the new
page must also be inserted into the parent. After this, the old page p is
replaced with the active page p′ in the saved path. All pages modified by
this operation are kept write-latched, because the acquired page latches
can be released only after the associated log record has been written.
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Lemma 5.5. The kill-page operation maintains Invariant 5.7.

Proof. Because the TMVBT index is balanced at the point when the
SMO that uses the page-killing operation is triggered, page p must contain
at least min-live entries that are alive at version v′, for each version v′ ∈
[v, vactive], where v is the starting point of the life span of p. There are
thus at least min-live entries in page p that are alive at version vactive .
These entries are either copied or moved to the new page p′, which thus
has at least min-live live entries after the page-killing operation. Because
the life spans of the copied entries were cropped to start from version
vactive , page p′ contains no entries that are alive at any earlier version
v′ < vactive . All of the entries that are alive at version vactive in page p are
deleted from p—either physically, if they were active entries; or logically,
if they were inactive entries. After the page-killing operation, page p thus
does not have any entries that are alive at version vactive . The number of
entries in page p that were alive at an earlier version v′ < vactive remains
unchanged. Clearly, the invariant holds for pages p and p′. Furthermore,
a single router that is alive at version vactive is logically deleted from
the parent page q, and a new active router is inserted to the parent to
replace it. The number of live entries in the parent page is therefore not
affected for any version. Because all the pages retain a valid number of
live entries for all versions, we conclude that the page-killing operation
maintains Invariant 5.7. It is clear that Invariant 5.6 is also maintained.◻

The split-page operation is a structure-modification operation that
splits a page that has become full. The operation is similar to the MVBT
version-split operation, with the exception that active pages are directly
key-split without first killing the page. This operation is triggered by a
write action when a data page has become full, by both undo-write
and undo-delete actions if the leaf page cannot accommodate the undo
action, and the operation is also used to split index pages along the search
path. At the beginning, the page p to be split is retrieved from the saved
path along with its parent page q, and both pages are write-latched for
modification; unless the operation was triggered by a user action, in which
case page p is already write-latched. As explained in the beginning of this
section, we expect that parent pages in the saved path have already been
split so that the parent page q can accommodate the routers to the new
pages created by the split operation.

An overview of the actual split-page operation is simple: if page p is
active, it will be key-split, and if it is inactive, it will be version-split.
Key-splitting and version-splitting will be defined in more detail below.
An overview of the page-split operation is shown in Algorithm 5.2. In the
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split-page(p, q):
1 if p is active then // Figure 5.9, key split

2 p′ ← allocate, write-latch, and format a new page
3 distribute entries of p between p and p′

4 else // Figures 5.10(a)–5.10(f), version split

5 ap ← count the number of live entries in p
6 p′ ← kill-page(p)
7 if ap > max-split then // Figure 5.10(b)

8 p′′ ← allocate, write-latch, and format a new page
9 distribute entries of p′ between p′ and p′′

10 else if ap < min-split then // Figures 5.10(c)–5.10(f)

11 s← find a live sibling page of p′ from q and write-latch it
12 as ← count the number of live entries in s
13 p′′ ← s if s is active, kill-page(s) otherwise
14 if ap + as > max-split then // Figures 5.10(d),5.10(f)

15 redistribute entries of p′ and p′′

16 else // Figures 5.10(c),5.10(e)

17 move all entries of p′′ to p′

18 deallocate p′′

19 end if
20 else // Figure 5.10(a)

21 // No further action required

22 end if
23 end if

Algorithm 5.2. The page-splitting algorithm. Splits a page p, possibly
redistributing the live entries with a sibling page s. Updates the routers
in the parent page q.

algorithms presented in this section, we denote by ap the number of live
entries in page p. Note that the bottom-up checking phase needs to do
the same checks that are described in Algorithm 5.2 to determine which
kind of a split needs to be done. When performing the actual structure
modification, the same checks must be performed again (as described
here), or results saved during the checking phase can be used.

The first part of the split algorithm, the key-split operation, is similar
to the page-split operation in a standard B+-tree. This operation begins
by allocating, write-latching, and formatting a new page p′. After that,
the entries of the old page p are distributed between p and p′ by moving
half of the entries from p to p′. Note that all the entries of page p are
alive and active at the beginning of the operation because p is active, and
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thus the entries may be physically distributed between the pages. The
operation finishes by adjusting the the router to page p in the parent
page q, and by inserting a router to the new page p′ into q. The key-split
operation is illustrated in Figure 5.9.

p →
p

p′

Figure 5.9. Key-splitting an active page p. The horizontal axis represents
life spans, and the vertical axis key ranges.

An exception to the key-split algorithm is the situation when page p
has no parent page, and the saved path only contains the page p. This
happens when page p is a root page. In this situation a new parent page r
is allocated, write-latched and formatted; and routers to pages p and p′

are inserted to it. The new root is attached to the TMVBT by inserting
the tuple (vactive , r) into root∗, and by updating the cached root page
identifier for version vactive . This will replace the existing tuple (vactive , p)
in the root∗, which pointed to the previous root page p. The rest of the
key-split operation is otherwise similar to the normal situation. Note that
this operation increases the height of the search tree Svactive by one.

The version-split operation begins by killing the inactive page p with
the page-killing operation defined earlier. The new active copy of page p
is denoted by p′. At this point, page p′ may contain too few or too many
entries to satisfy Invariant 5.5. If the number of entries in p′ (i.e., ap, the
number of live entries in p before the page-killing operation) is less than
min-split, the page will be merged with a sibling page by consolidating it
in the same way as pages are merged in the merge-page operation that will
be shortly described. If the number of entries in p′ is more than max-split,
page p′ will be key-split in the same way as active pages are split.

As with the key-split algorithm, it is possible that the inactive page p
has no parent, if it is the root page of the current-version search tree. In
this case, the page-killing operation cannot update the parent page, but
instead a new tuple (vactive , p′) is inserted to root∗ to indicate that the
new active page p′ is the current root page. If page p′ contains more than
max-split entries after the page-killing operation, it is further key-split, a
new parent page r is created, and the tuple (vactive , p′) in root∗ is replaced
by (vactive , r). The cached root page identifier must also be updated.

The entire split operation, consisting of either a key split or a version
split (possibly followed by a key split or consolidation), and including
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the possible tree-height increase or root-page update, is logged with a
single redo-only log record containing the page identifiers of all the pages
involved in the SMO; that is, a subset of the pages p, p′, p′′, s, q, and
r. The redo-only log record must also contain information of all the
entries moved or copied between pages, as explained in Section 2.8. For
example, the log record of a version split followed by a key split (shown
in Figure 5.10(b)) is ⟨T , version-split-key-split, p, p′, p′′, q, Ep′ , Ep′′⟩,
where Ex denotes the set of entries that were written on page x. This
operation can be redone on p by deleting all the live entries from p; and
on pages p′ and p′′ by clearing the page and inserting the entries from the
corresponding set Ep′ and Ep′′ . As usual, all the pages are kept latched
until the log record has been generated and its LSN stamped in the Page-
LSN fields of the pages. The split operation finishes by replacing p in
the saved path with the active page whose key range covers k (either p′

or p′′), and by unlatching all the other pages involved in the operation.

p → p p′

(a) min-split ≤ ap ≤ max-split

p → p

p′

p′′

(b) ap > max-split

p

s
→ p

s

p′

(c) s inactive, ap < min-split and
ap + as ≤ max-split

p

s
→

p

s

p′

p′′

(d) s inactive, ap < min-split and
ap + as > max-split

p

s
→ p

p′

(e) s active, ap < min-split and
ap + as ≤ max-split

p

s
→

p
p′

p′′

(f) s active, ap < min-split and
ap + as > max-split

Figure 5.10. Version-splitting an inactive page p. The horizontal axis
represents life spans, and the vertical axis key ranges. Case (a) represents
a version split, (b) a version split followed by a key split, (c) a version split
followed by a merge with an inactive sibling, (d) a version split followed
by a redistribution of live entries with an inactive sibling, (e) a version
split followed by a merge with an active sibling, and (f) a version split
followed by a redistribution of live entries with an active sibling.
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All the possible different page-split scenarios for inactive pages are
shown in Figure 5.10. In the figure, the horizontal axis represents life
spans, and the vertical axis represents key ranges. In the presented sce-
narios, page p is split. Page s is the sibling page that is located from
the parent of p found in the saved path. Pages p′ and p′′ are new pages
allocated by the operation. As can be seen from the figures, all the sce-
narios preserve the initial key-version extents of p and s. That is, the new
pages cover exactly the same region in key-version space as the old pages
did. The version-split operation therefore preserves the combined spatial
extents of the pages that are involved in the split operation, and thus can
neither cause pages to overlap nor create gaps in the key-version space.

A more detailed example of a version split followed by a merge with
an inactive sibling (as depicted in Figure 5.10(c)) is shown in Figure 5.11.
This example shows how the live entries of a leaf page p are merged with
the live entries of a sibling page s into a newly allocated page p′. As seen
from the figure, the entries labeled 1 and 2 are killed, and active copies
of them are created into the new page p′. The third entry, entry 3, is
already active, and it is therefore physically moved from page s into the
new page p′, thus reducing the number of entries stored in s by one. After
the split operation, pages p and s are dead and only contain dead entries.

Versions

K
ey

s

p

s

vactive

1

2

3

(a) Before

Versions

K
ey

s

p

s

p′

vactive

1

2

3

(b) After

Figure 5.11. Example of a page split. This figure shows a version split
followed by a merge with an inactive sibling. Entries labeled 1 and 2 are
killed and new copies of them are created in page p′, while the entry 3 is
physically moved from page s into page p′.

Lemma 5.6. The split-page operation maintains Invariant 5.7.
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Proof. First of all, if the page p that is to be split is an active page,
then the split operation is triggered because the page became full and
thus contains ap = B live entries. In this case, the entries will be split
between the page p and a newly allocated page p′, resulting in B/2 entries
in each page, satisfying min-split ≤ B/2 ≤ max-split. Secondly, if the page p
is inactive, it is first killed, and the resulting page p′ contains ap entries,
where min-live ≤ ap ≤ B. This is because the split-page operation is only
invoked when the page p has become full, and by Invariant 5.7 it must
contain at least min-live live entries. If ap < min-split, the page will be
merged with another page to avoid thrashing. Merging pages maintains
the invariant, which is proven in the proof of Lemma 5.7 for the merge-
page operation. If ap > max-split, the page will be key-split into two pages,
both of which will contain more than min-split entries. ◻

merge-page(p, q):
1 ap ← count the number of live entries in p
2 p′ ← p if p is active, kill-page(p) otherwise
3 s← find a live sibling page of p from q and write-latch it
4 as ← count the number of live entries in s
5 p′′ ← s if s is active, kill-page(s) otherwise
6 if ap + as ≤ max-split then // Figures 5.12(a),5.12(c),5.13(a),5.13(c)

7 move all entries of p′′ to p′

8 deallocate p′′

9 else // Figures 5.12(b),5.12(d),5.13(b),5.13(d)

10 redistribute entries between p′ and p′′

11 end if

Algorithm 5.3. The page-merging algorithm. Merges a page p with a
sibling page s located from the parent page q, killing the pages if they are
inactive. Updates the routers in the parent page q accordingly.

The merge-page operation is a structure-modification operation that
merges a page with a sibling page when the number of live entries in the
page is about to decrease below min-live. This operation is triggered by
the delete or undo-write action, if an entry deletion is about to decrease
the number of live entries below min-live; and by SMOs at a lower level.
An overview of the operation is shown in Algorithm 5.3. The operation
begins by retrieving the page p to be merged from the saved path. The
page p is assumed to be write-latched at this point. The parent page q also
needs to be modified, so it is retrieved from the path, and write-latched
for modification. As with the split-page operation, it is assumed that
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the parent page q can accommodate the insertions or deletions possibly
triggered by this operation (insertion of up to two new routers; or deletion
of a single router).

The merge operation continues by finding a live adjacent sibling page s
from the parent page q, and by write-latching it. Such a page is guaran-
teed to be found, because by Invariant 5.7, the parent page must contain
at least two live entries, and live entries are adjacent to each other. If
either page p or the sibling page s is inactive, it is killed with the page-
killing operation defined earlier; otherwise the merge operation will be
performed on it directly. We denote the active pages by p′ (from page p)
and p′′ (from page s). The operation now merges the active pages p′

and p′′.
The merging is similar to the standard B+-tree merge operation. If

the number of combined entries of pages p′ and p′′ (equivalently, number
of live entries in pages p and s before the page-killing operations) is larger
than max-split, the entries will be redistributed between the two pages. If
the number of entries is less than or equal to max-split, the entries will be
moved to page p′, and page p′′ will be deallocated by removing the router
to it from the parent and by deallocating the page from the corresponding
space-map page. The router to page p′ (and to page p′′ in the former case)
in the parent q must be updated to match the new key ranges. Updating
the routers in the parent page q is sufficient, because the pages are active,
and therefore have only one parent by Lemma 5.2.

An exception to the normal operation of merge-page is when the page p
is a root page. First of all, by Invariant 5.7, a root page of version v must
contain at least two entries that are alive at version v, unless the root
page is the only page in the search tree Sv. If p is the only page in Sv,
then p is left as it is until a delete operation deletes the last live entry
from p. At this point, it is possible to insert a null marker (vactive ,∅) to
root∗ to signify that the current version search tree is empty. However,
for optimizing the space usage of the index, it is also possible to allow the
searches to locate the root page p. Because p contains no live entries, the
queries will immediately notice this and stop traversing the search tree.
If the null marker is inserted to root∗ and p is active, then the insertion of
(vactive ,∅) replaces an existing tuple (vactive , p), and p can be deallocated.

If p is a root page and the height of p is greater than one, then the
page-merge operation is triggered by an SMO at a lower level, and we
must check whether the operation would cause the number of live entries
in p to decrease to one. If this is the case, then the height of the search
tree Sv will be decremented by making the only remaining live child page
of p the new root of Sv. This cannot be done before the SMO at the lower
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p

s
→ p′

(a) p active, s active,
ap + as ≤ max-split

p

s
→

p′

p′′

(b) p active, s active,
ap + as > max-split

p

s
→ p′

s

(c) p active, s inactive,
ap + as ≤ max-split

p

s
→

p′

s
p′′

(d) p active, s inactive,
ap + as > max-split

Figure 5.12. Merging an active page p. The horizontal axis represents
life spans, and the vertical axis key ranges. Case (a) represents a merge,
(b) a redistribution of live entries, (c) a merge with an inactive sibling,
(d) a redistribution of live entries with an inactive sibling.

lever, however, so the tree-height-decrease operation must be performed
as a part of the SMO at the lower level. Therefore, after the SMO at the
lower level, if the number of entries in the root page p has decreased to
one, the only remaining child page r of p is located from p, and a tuple
(vactive , r) is inserted to root∗. If p is active, this will replace the existing
tuple (vactive , p), and page p can be deallocated. The cached root page
identifier of Svactive must also be updated.

The entire merge-page operation, including the possible root-page-
update operation, is logged with a single redo-only log record containing
the page identifiers of all related pages—this means pages p, s, p′, p′′,
q, and r. The log record must contain sufficient information of all the
moved entries, like the log record of the split-page operation. For example,
the log record for a merge-page operation that merges an active page
with an inactive sibling, resulting in a single active page (Figure 5.12(c)),
is ⟨T , merge-active-inactive, p, s, q, Ep, Es⟩, where Ex denotes the
set of entries present in page x after the operation. Note that in this
situation, the active page p is reused as p′, and thus p′ is not present
in the log record. After the log record has been written, the saved path
is returned to a proper state, so that the active page whose key range
covers k (either p′ or p′′) is placed in the saved path to replace the merged
page. The operation finishes by releasing the write latches on the pages.

The possible page-merge scenarios for page p are shown in Figures 5.12
and 5.13. In the figures, page p is merged with a live sibling page s.
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(a) p inactive, s active,
ap + as ≤ max-split

p
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→

p
p′

p′′

(b) p inactive, s active,
ap + as > max-split

p
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(c) p inactive, s inactive,
ap + as ≤ max-split

p

s
→

p

s
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(d) p inactive, s inactive,
ap + as > max-split

Figure 5.13. Merging an inactive page p. The horizontal axis represents
life spans, and the vertical axis key ranges. Case (a) a represents a version
split followed by a merge, (b) a version split followed by a redistribution
of live entries, (c) a version split followed by a merge with an inactive
sibling, and (d) a version split followed by a redistribution of live entries
with an inactive sibling.

For consistency with Figures 5.9 and 5.10, the resulting active pages are
denoted p′ and p′′, even though p′ = p when the page p is active, and p′′ = s
when s is active. For clarity of presentation, the algorithms now create
a new page p′ in the situation depicted in Figure 5.13(a), and deallocate
the existing active sibling page s, instead of reusing s as the resulting
merged page. An actual implementation may of course correct this and
reuse page s instead of creating p′.

Lemma 5.7. The merge-page operation maintains Invariant 5.7.

Proof. The page p that is to be merged must have exactly min-live
live entries, while the sibling page s can have between min-live and B
live entries. The combined number of live entries e ∶ 2 × min-live ≤ e ≤
min-live +B can always be distributed among the two pages so that the
number of entries in both pages is between min-split and max-split. In the
minimum case, 2 × min-live ≥ min-split entries are moved to page p′, and
page p′′ is deleted. Note also that 2×min-live < max-split, and Invariant 5.5
thus holds for page p′. In the maximum case, min-live + B entries are
distributed between p′ and p′′, resulting in more than min-split and less
than max-split entries per page. The former holds trivially (as we are
distributing more than max-split ≥ 2×min-split entries between two pages),
and the latter holds because min-live+B = (min-split−s)+(max-split+s) =
min-split +max-split > 2 ×min-split. ◻
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Lemma 5.8. Any structure-modification operation needed in the im-
plementation of the insert, delete, undo-insert and undo-delete ac-
tions keeps at most five TMVBT pages latched simultaneously and trans-
forms a balanced (Definition 4.3) TMVBT index into another balanced
one. For any of the actions, at most h + 1 structure modifications are
needed, where h is the height of the search tree Svactive of the active data-
base version vactive .

Proof. As seen from the Figures 5.9–5.13, when an SMO is triggered on
page p at level l, at most four pages at level l are involved in the operation.
In addition to these four, the parent page q is also latched during the
SMO. If a root-page update occurs (either a tree-height-increase or a
tree-height-decrease), then the root page identifier is also present in the
log records. However, the root page does not increment the number of
pages latched at a time, because (1) during a tree-height-increase, there
is no parent page q, so the maximum number of latches required is still
five; and (2) during a tree-height-decrease, the new root r is the page p′,
because just before the root-page update, p′ is the only remaining child
page of q.

When considering the balance condition, Lemmas 5.5, 5.6 and 5.7 show
that each SMO maintains Invariant 5.7, which proves that if the TMVBT
is balanced before the SMO, then it is also balanced immediately after
the SMO. ◻

The following theorem states that the update actions also maintain
the asymptotic bounds of the MVBT:

Theorem 5.9. Assuming that the root page of the database version v
is known, each of the actions insert, delete, undo-insert, and undo-
delete is performed in time Θ(logBmvactive), where mvactive is the number
of data items in the active database version vactive .

Proof. Searching for the correct leaf page to perform the update has a
cost of Θ(logBmvactive) pages, because the search tree Sv is balanced. By
Lemma 5.8, at most h + 1 structure-modification operations are needed
to perform the update, where h = Θ(logBmvactive). At each level, at
most five pages need to be accessed to perform the structure-modification
operations. The structure-modification operations thus have a maximum
cost of Θ(logBmvactive), which is the same as the initial tree traversal. ◻

As discussed in Section 4.4, the MVBT index has a space complexity
of O(n/B) database pages, where n is the number of updates performed
during the history of the database, and B is the page capacity. This has
been proven by Becker et al. [7, 8]. Their proof relies on the fact that,
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for leaf pages, (1) each structure-modification operation that targets a
page p creates at most a constant number of new pages (at most two);
and (2) at least a constant minimum number of update operations (εd
in the discussion of Becker et al. [8], s for the TMVBT) must have been
performed on a page p for it to require a structure-modification operation.
Therefore, the amortized cost of the update actions is at most O(2B/s) =
O(1) new entries, if s is linearly dependant on the page capacity B. This
directly translates to the reported O(n/B) leaf pages for a history of n
update actions, because each leaf page holds at least min-live = O(B)
entries. Similarly, for the index pages of the MVBT, each SMO requires
space for at most two new index entries at the first index page level (at
height two, directly above the leaf pages). Becker et al. [8] show that
these insertions at the index level do not increase the amortized space
complexity of the update actions, if d ≥ 2/ε. This translates to s ≥ 2,
which is a reasonable requirement for the split tolerance variable in any
case.

When considering the space complexity of the TMVBT, we note that
the premises of the MVBT space complexity proof remain true: each
SMO creates at most a constant number of new pages (at most two),
at most a constant number of new entries (again, two) are inserted into
the parent page, and at least a minimum number of update actions must
target page p before any SMO is required on it (s actions). We can thus
conclude that the space complexity of the TMVBT is O(n/B) pages, if s
is linearly dependent on the page capacity B, and s ≥ 2.

In the discussion of space complexity for any of the efficient multiver-
sion index structures, the complexity has been given in terms of the total
number of update actions performed on the index structure. However, a
transaction may insert many entries which it then later on deletes; the
index structure should not consume space for the actions that are undone.
For the TMVBT we can state the space complexity in terms of the num-
ber of entries that are alive after transactions have committed; in these
terms, the space complexity is O((∑v∈V mv)/B) database pages, where V
is the set of all versions, and mv is the number of entries that are alive at
version v.

Theorem 5.10. The space complexity of the TMVBT index is

O(min{n,∑
v∈V

mv}/B).

Proof. The proof for the first part of the result, O(n/B), is the same
as the proof for MVBT [7, 8] (see the discussion above). For the next
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part, consider any fixed version v. Invariant 5.7 states that each page
of the search tree Sv contains at least min-live entries that are alive at
version v. Consider now the leaf pages of the search tree Sv. We can see
from the SMOs that entries are duplicated only when creating live copies
of them; that is, duplicates differ in their life spans, not in their keys or
key ranges. This means that within a search tree of any version v, there
are no duplicates of any of the entries that are alive at version v, and thus
there are at most O(mv/min-live) = O(mv/B) leaf pages in Sv, because
we require that min-live is linearly dependent on the page capacity B.
Furthermore, by a proof that is similar to the proof of Theorem 3.1, there
are at most O(mv/B) index pages in the search tree Sv. From this we
arrive to our result by summation over the set of all versions V . ◻

In restart recovery from a system crash, an ARIES-based [63, 66]
recovery algorithm is used.

Theorem 5.11. In the event of a system crash, the redo pass of restart
recovery produces a balanced TMVBT on which the undo actions by a
backward-rolling updating transaction (if any) can be performed logically
if a physical undo is impossible.

Proof. Each structure-modification operation is performed as a single
atomic operation that transforms a balanced TMVBT index into another
balanced TMVBT index. After the redo pass has finished, the TMVBT
index is therefore balanced. Thus, each of the undo actions is performed
logically, if a physical undo is not possible. ◻

5.6 Challenges With Concurrent Updates

The structure-modification operations presented in the previous section
are based on the fact that there can be only a single updating transaction
operating on the index structure at a time. We believe that it is not
directly possible to further generalize the index structure so that multiple
updating transactions could apply their updates directly on the leaf pages
of the TMVBT index. We now present an example of the problematic
situations that can arise should multiple updating transactions be allowed
to operate on the index concurrently.

Assume that a transaction T1 has created a leaf page p that contains
two entries inserted by the transaction. In this illustrative example, we
have set min-live = 2, so that Invariant 5.7 holds for the index struc-
ture. The situation after T1 has committed with a commit-time version
commit(T1) = 1 is depicted in Figure 5.14(a).
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Assume now that two active updating transactions T2 and T3 perform
updates so that (1) T2 inserts entries with keys preceding and succeeding
the keys of the entries inserted by T1; and (2) T3 deletes the entries
inserted by T1. If we wish to be able to store the updates of multiple
active updating transactions in the leaf pages of the TMVBT index, we
must use entries such as the pending updates defined in Chapter 2 (see
Definition 2.8). One possible way of modeling this situation is shown in
Figure 5.14(b).
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Figure 5.14. TMVBT invariant fails with concurrent updates. If trans-
action T3 commits before T2, the number entries that are alive at version 2
is zero.

If T2 commits first with commit(T2) = 2, and T3 afterwards with
commit(T3) = 3, the logical state of the database after both commit opera-
tions is shown in Figure 5.14(c). We assume here that a lazy timestamping
scheme is employed so that the actual entries stored in the database may
be the same entries as shown in Figure 5.14(b), but when the page is
later accessed the pending updates on the page will be converted into the
entries shown in Figure 5.14(c). In this situation, Invariant 5.7 holds for
the page p, because m1 = 2, m2 = 6, and m3 = 4; where mv denotes the
number of entries that are alive at version v.

Suppose now that transactions T2 and T3 commit in reverse order, so
that T3 commits first with commit(T3) = 2, and T2 commits later with
commit(T2) = 3. The situation after these commits is shown in Fig-
ure 5.14(d). Now, m2 = 0, and Invariant 5.7 does not hold. Clearly, situa-
tions such as these should be prevented if the optimality of the TMVBT
index is to be preserved.

To prevent such situations we would have to be able to (1) identify
such situations when the updating transactions are active, and (2) remedy
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the situation by applying proper structure-modification operations. The
situations must be identified while the transactions are active, because
we cannot assume that the invariant could be checked and enforced at
transaction commit, because this would require that each page the trans-
action has modified be checked during transaction commit, which is too
costly to be practical. Secondly, even if we assume that such situations
could be identified when the updating transactions are active, it may be
impossible to remedy the situation. To show this, consider the example
situation shown in Figure 5.14(b). As Figure 5.14(d) shows, this situation
may lead to the invalidation of Invariant 5.7. Normally, when the number
of live entries in a page falls below min-live, it is possible to merge the page
with a sibling page. In this situation, however, there is no more room on
the page for it to be merged with any sibling page, and the page cannot
be version-split because the ordering of the entries created by the active
transactions is not known. We conclude that we cannot allow multiple
updating transactions to apply updates on the leaf pages of the TMVBT
index directly, if the optimality of the index is to be maintained.

5.7 Summary

The TMVBT index is an optimal multiversion index for key-range queries
(i.e., x/−/point queries, see Section 2.3), provided that the root of the
queried version is known. However, only a single updating transaction
can operate on it at a time. The algorithms presented in this chapter are
efficient, because no key-level locking is required, and no latch-coupling
is needed. As such, the TMVBT index is an optimal multiversion in-
dex structure for any application where there is only a single source of
updates, and many clients performing queries. Our goal is, however, to
design an efficient general-purpose multiversion index structure. The next
chapter reviews the concurrent multiversion B+-tree (CMVBT), which is a
general-purpose multiversion index that is based on the optimal TMVBT
index. Multiple updating transaction can operate on the CMVBT index
concurrently.
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CHAPTER 6

Concurrent Updating of the MVBT

The optimal TMVBT index that was presented in the previous chapter
can only be used by at most one updating transaction at a time, but
the transaction may operate concurrently with many read-only transac-
tions. We now describe the concurrent multiversion B+-tree (CMVBT)
index, which uses a TMVBT index for storing the updates of commit-
ted transactions, and a separate main-memory-resident versioned B+-tree
(VBT) index for storing the updates of active (and recently committed)
transactions. With this organization, multiple updating transactions can
operate on the structure concurrently. A system maintenance transaction
is run periodically to apply the updates of committed transactions into
the TMVBT index, thus keeping the VBT index small. The discussion
in this chapter is based on the design ideas presented in our previous ar-
ticle [37]. The chapter begins with an overview of the concurrent index
organization in Section 6.1. After that, Section 6.2 describes the general
principles on how concurrency control and recovery are managed on the
index. Section 6.3 shows how the user actions are implemented, and Sec-
tion 6.4 describes the maintenance transaction. Finally, in Section 6.5,
we present a summary of the CMVBT structure.

6.1 Concurrent Index Organization

As discussed in the previous chapter, we believe that the TMVBT index
cannot be further extended so as to be updatable by multiple concur-
rent updating transactions, without compromising the optimality of the
structure (specifically Invariant 5.7). The concurrent index structure we
propose is therefore based on the idea of collecting all the updates of active
transactions and applying them to the TMVBT index as a batch update,
after the transactions have committed. Batch updates have been previ-
ously used to enhance the performance of B+-tree indexes [72, 73] and also
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to create indexes on large existing data sets while simultaneously allowing
concurrent updating transactions to modify the data set [67]. In both of
these cases, a separate structure is used to record the updates of active
transactions. The updates are then applied to the main index structure
later, after the transactions have committed (for the former case) or after
the index has been created (for the latter case).

Our concurrent multiversion B+-tree, or CMVBT, is a multiversion
index structure that is composed of two parts: a main-memory-resident
versioned B+-tree index (VBT, as defined in Section 3.2) that is used as a
temporary storage for the pending updates created by active transactions,
and a transactional multiversion B+-tree index (TMVBT, as described in
the previous chapter) that is used as a final, stable storage in which all
the committed multiversion data items are eventually stored. We assume
that the VBT index has sibling pointers at each level pointing to the next
page at the same level, like in a Blink-tree [52]. These pointers will be
used to accelerate key-range scans in the VBT index. The transactions
operating on the CMVBT index follow the transaction model presented
in Sections 2.5 (for read-only transactions) and 2.6 (for updating transac-
tions). For user transactions, the TMVBT index is a read-only structure.
The TMVBT is only updated by a system maintenance transaction, which
is run periodically to apply the updates of committed transactions from
the VBT index into the main TMVBT index, and to delete the pending
updates from the VBT. This setup is illustrated in Figure 6.1. We assume
that only a single instance of the maintenance transaction is running at
a time; for discussion on multithreading the maintenance transaction, see
the discussion at the end of Section 6.4.

We expect that the VBT index will remain small under typical data-
base workloads, as the maintenance transaction is run periodically to
apply the updates to the TMVBT and delete them from the VBT. For
efficiency, we thus reserve a portion of the page buffer specifically for the
VBT index. This way the entire VBT index can be kept in main memory
during normal transaction processing. In all of our tests, the VBT size
was between 0 and 20 pages, with a typical size of just a few pages (see
Section 7.3, page 149).

Like the TMVBT, the CMVBT maintains a variable vcommit that
records the version of the latest committed transaction. In the CMVBT
index, the updates are performed by inserting pending updates (see Def-
inition 2.8) to the VBT index. The pending updates are then later on
applied to the TMVBT index and deleted from the VBT. If there is a
large number of concurrent updating transactions that commit at around
the same time, the TMVBT index will “lag behind” until the maintenance

112



6.1 Concurrent Index Organization

CMVBT

TMVBT

Maintenance
transaction

Move committed
updates

VBT Perform updates

Issue queries

User

Figure 6.1. The CMVBT index structure organization. User transactions
issue queries both to the VBT and the TMVBT indexes, but updates are
performed only on the VBT. A system maintenance transaction is run
periodically to apply the pending updates of committed transactions into
the TMVBT index and to delete them from the VBT.

transaction has had time to apply the pending updates into the TMVBT.
Therefore, in the context of the CMVBT index, the vcommit variable does
not tell the maximum committed version of the TMVBT index. Accord-
ingly, the CMVBT maintains a separate variable vstable that tells which
commit-time versions are already reflected in the TMVBT index. In other
words, for each version v ≤ vstable , all the updates of a transaction T with
commit(T ) = v have been applied to the TMVBT index.

Definition 6.1. In the CMVBT index, the variable vcommit tells the
version of the latest committed transaction. A separate variable vstable ≤
vcommit tells the commit-time version of the latest transaction whose up-
dates have been applied to the TMVBT index. The commit-time versions
v ≤ vstable are called stable versions, and the transactions that created the
versions are called stable transactions. All the updates of stable transac-
tions have been applied to the TMVBT index by the maintenance trans-
action. The commit-time versions v > vstable are called transient versions,
and the corresponding transactions transient transactions. All the up-
dates of transient transactions are located in the VBT index. ◻

By this definition, an active updating transaction is always transient,
while a committed transaction can be either transient or stable. An ex-
ample of the commit-time versions and transaction identifiers used in a
CMVBT database is given in Figure 6.2. The example shows a data-
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base with five committed transactions (versions 1–5), and two active, un-
committed transactions (with temporary identifiers 102 and 104). Three
out of the five committed transactions are stable, namely the transac-
tions with commit-time versions 1–3, and the transaction identifiers 103
and 101 correspond to transient committed versions 4 and 5, respectively.
The CTI table present in the figure is explained in the following para-
graphs.

1
2
3

TMVBT

101
102
103
104

VBT CTI

4→ 103
5→ 101

vstable = 3
vcommit = 5

Figure 6.2. Example of the logical contents of a CMVBT index. The
database contains the updates of five committed versions, versions 1–5.
The TMVBT index contains all the updates of stable versions 1–3, and
the updates of committed transient versions 4–5 are still located in the
VBT index, identified with transaction identifiers 103 and 101. The VBT
additionally contains updates by two active updating transactions that
have transaction identifiers 102 and 104.

As explained in the transaction model for updating transactions in
Section 2.6, we assign a transaction identifier called id(T ) for each new
transaction T . The updates of the transaction T are stored into the
VBT index using transaction identifiers in the VBT entries (identifiers
101–104 in the example situation of Figure 6.2). The commit-time ver-
sions commit(T ) of committed transactions define the ordering of the
transactions (versions 1–5 in the example). When the updates of a com-
mitted transaction T are applied to the TMVBT index, the commit-time
version is known, and will be used in the TMVBT index. The TMVBT
thus stores commit-time versions exclusively, and the VBT index stores
only transaction identifiers. The transaction identifiers are internal to
the database system, and not visible to the users. The users only see
the commit-time versions when issuing historical queries to the database.
Both of these versions can be based either on the real time, or on an
increasing counter value, as long as they are unique and increasing. In
the following discussion, we assume that the versions are based on an
increasing counter value.
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Because the transaction identifiers and the actual, commit-time ver-
sions of the transactions may differ, a mapping from commit-time versions
to the transaction identifiers is maintained in an in-memory hash-table
called the commit-time-to-identifier table, or CTI table. In the example
of Figure 6.2, the updates of committed transactions with commit-time
versions 4 and 5 are still located in the VBT index with transaction iden-
tifiers 103 and 101. A mapping vc → vi, for a committed transaction T
with commit(T ) = vc and id(T ) = vi, is removed from the CTI table once
the maintenance transaction has applied all the committed updates of T
into the TMVBT, deleted the pending updates from the VBT, and com-
mitted. The CTI table does not need to be backed onto disk. If the
system fails, the CTI table can be reconstructed from the log file contents
during the analysis pass of the ARIES restart recovery [66].

Definition 6.2. When the maintenance transaction is running, it ap-
plies the updates of a single version called the move version vmove into
the TMVBT. The move version is always the earliest transient committed
version. ◻

Invariant 6.3. In our numbering convention, vmove = vstable + 1 when-
ever the maintenance transaction is running. The updates of the trans-
action with commit(T ) = vmove can be located in both the VBT and the
TMVBT indexes during the execution of the maintenance transaction. If
the maintenance transaction is not running, vmove = vstable .

When the maintenance transaction is running, the user transactions
still use the stable version variable vstable to direct the search for the
correct versions of data items. In the example of Figure 6.2, the main-
tenance transaction could be moving the updates of transaction T with
commit(T ) = 4 from the VBT to the TMVBT.

When multiple active transactions perform updates on the same data
item, all the different updates are stored in the VBT, ordered by the
transaction identifiers of the transactions that created them. We assume
that the convention presented in Section 3.2 is used; that is, the result
of a write action by a transaction T with id(T ) = vi is represented by
a tuple (k, vi,w) in the VBT index, and the result of a delete action is
represented by a tuple (k, vi,�). When updating transactions commit, the
pending updates remain in the VBT until the maintenance transaction
deletes them after applying the updates to the TMVBT index.

Because the ordering of the committed transactions may differ from
the ordering of the transaction identifiers of the transactions, the entry
values in the VBT might not be in the correct commit-time order. There-
fore, reading transactions that wish to read a version v > vstable need to find
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the transaction identifiers of the transactions with commit-time versions
vc ∶ vstable < vc ≤ v, search the VBT for all these versions, and rearrange
them according to the commit-time ordering so that the most recent up-
date is found. In the example database of Figure 6.2, a user querying for
keys that are present in the commit-time version 5 must find all keys in
the VBT stored with transaction identifiers 103 and 101 (corresponding
to commit-time versions 4 and 5). This is relevant for situations where
the queried key has not been updated by the latest preceding transaction
(in the example, the transaction with commit-time version 5), so that
the data item that is alive at the queried version has been created by an
earlier transaction.

More formally, we define Cv to be the set of transient committed
versions that are relevant when querying for the version v: Cv = {vc ∶
vstable < vc ≤ v}. In the example of Figure 6.2, C5 = {4,5}. Furthermore,
we define a mapping Ĉv from the transaction identifiers of the transac-
tions that created the committed versions into the commit-time versions:
Ĉv[CTI[vc]] = vc for all vc ∈ Cv. In the example, Ĉ5 = {101→ 5,103→ 4}.
Now, when looking for the most recent update of key k, the VBT must be
queried searching for the updates that have been created by a transaction
with an identifier vi such that there is a mapping vi → vc in Ĉv. After all
these updates for any given key have been found, they must be rearranged
according to the ordering of the corresponding commit-time versions, so
that updates with a transaction identifier vi are sorted by Ĉv[vi]. After
this, the most recent update is known to be the last update in the or-
dering. If no pending updates on key k are found in the VBT, the most
recent update is queried from the TMVBT index.

The “wrong” ordering of entries in the VBT is not specific to the
CMVBT structure, but is in fact present in all multiversion database
systems that allow concurrent updating transactions to commit in an
order different from their starting order. Lomet et al. [55] have solved this
problem by using lazy timestamping, as described in Section 4.2. This
technique also requires a lookup table (the persistent timestamp table [55,
57]) for converting transaction identifiers into commit-time versions. In
our technique, the versions of entries are corrected when the committed
pending updates are applied to the TMVBT for permanent storage, and
stable versions can be queried without having to convert any versions or
rearrange any updates.
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6.2 Concurrency Control and Recovery

The CMVBT allows us to use various approaches for concurrency con-
trol and recovery. In this section, we describe the general idea of our
concurrency-control and recovery algorithms. Our approach for data-
base recovery follows the ARIES algorithm [63, 64, 66] with physiologi-
cal logging and standard steal-and-no-force page buffering policy. Each
structure-modification operation on both the VBT and the TMVBT is
logged using a single physiological redo-only log record, so that inter-
rupted tree-structure modifications are never rolled back (undone) when
a transaction aborts or system fails. This approach has been described
for B+-trees and Blink-trees by Jaluta et al. [40, 41].

The actions of user transactions on the VBT index are logged with
standard redo-undo log records, and the corresponding undo actions with
redo-only log records, as described in more detail in Section 6.3. These log
records are required for total and partial rollbacks of active transactions.
A total rollback for a transaction T could be performed by performing a
leaf-level scan of the VBT, and by deleting all the pending updates of the
form (k, id(T ), δ). However, if a single transaction updates the same key
multiple times, the previous values stored with the key are overwritten,
and need to be restored when rolling back the transaction to a preset
savepoint. Thus we write standard physiological redo-undo log records to
log forward-rolling update actions, and redo-only log records to log undo
actions, of user transactions. The structure-modification operations are
logged with redo-only log records, so that they are never undone. These
log records are used to bring the VBT up-to-date after a single transaction
has crashed. If the entire database system crashes, it is possible to bring
the VBT up-to-date either by using ARIES-based recovery [64, 66], or
by reconstructing the VBT logically based on the log contents, including
only the entries of committed transactions. All update actions on the
TMVBT are performed by the maintenance transaction, which is never
aborted or undone. If a system crash occurs during the execution of the
maintenance transaction, the transaction is resumed after the system has
recovered. Redo-only log records are thus sufficient for logging the actions
performed on the TMVBT index.

Concurrency control on the key level is provided by the snapshot isola-
tion (SI) algorithms (Section 2.7). In snapshot isolation, each transaction
reads data items that were alive when the transaction started; that is,
data items that are alive at version snap(T ) (see Section 2.5). The ver-
sion that transaction T is reading is called the snapshot of T . As with
the TMVBT index described in the previous chapter, read-only transac-
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tions always read data from their own snapshot, and thus do not require
locks to protect the keys against concurrent modifications. Updates to the
database are performed by adding a new version of the updated data item
to the snapshot of the updating transaction (with updates stored in the
VBT index), allowing updating transactions to read their own modifica-
tions directly from the snapshot. Snapshot isolation is an obvious choice
for multiversion structures, because the entire history of the database is
preserved, and thus the snapshot state is available for each transaction.

Logical consistency for updating transactions is guaranteed by check-
ing that overlapping transactions do not make updates to the same data
items. Transactions T and T ′ are overlapping, if snap(T ) < commit(T ′) <
commit(T ), or vice versa. We assume the same approach for enforcing
snapshot isolation as is used in PostgreSQL [2], as described in Section 2.7.
Each updating transaction thus takes a commit-duration lock on the key k
of any data item it modifies. Furthermore, an updating transaction T
must check that the data item with key k has not been updated by an
overlapping committed transaction T ′. We do not assume any specific
method for implementing this check, but leave the details open. One pos-
sible method is to search the VBT and TMVBT to see if any updates
have been made by such a committed transaction. Another possibility is
for the committed transaction T ′ to leave persistent “residual locks” on
the lock manager that conflict only with transactions that have started
before T ′ committed. If a conflicting update is found, the active trans-
action T must be aborted to maintain snapshot isolation. Note that the
write locks taken by updating transactions in this approach only block
other updating transactions, because read-only transactions take no locks.

The global version variables vcommit , vstable and vmove are maintained in
the persistent database, and the reading and writing of vcommit and vmove

are protected with locks, as in the TMVBT (Section 5.4). A begin-read-
only action acquires a short-duration read lock on vcommit for reading its
value, and a commit-update action acquires a commit-duration write
lock on it for incrementing its value. The maintenance transaction ac-
quires a commit-duration write lock on vmove at the beginning, thus guar-
anteeing that at most one maintenance transaction is active at a time.
The stable version variable vstable is read often, and thus the reading and
writing of it is protected by latching. This approach is sufficient, because
vstable is only updated by the maintenance transaction, which is never
undone. The updating of vstable is protected by a write latch taken on
the database page on which the variable is stored, and the reading of the
variable by query actions is protected by a read latch taken on the same
page.
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Structural consistency of the VBT index is maintained by standard
page-latching operations, with latch-coupling applied to ensure child-link
consistency during tree traversals. We define the latching order to be
top-down, left-to-right for all transactions, and we disallow upgrading
read latches to write latches. Furthermore, all page latches must be re-
leased whenever a write lock cannot be acquired immediately, so that no
page latches are held when the transaction is waiting for a lock. These
are necessary (and sufficient) restrictions to avoid deadlocks that involve
page latching [32]. For the TMVBT index, pages need to be latched, but
latch-coupling is not always required, as explained in Section 5.4. This is
because the only transaction that is allowed to perform updates on the
TMVBT index is the system maintenance transaction, and there can be
only one such transaction running at a time. The maintenance transac-
tion therefore does not need to do latch-coupling. Read-only transactions
that read inactive data do not need latch-coupling either, as noted in
the previous chapter. This means that read-only transactions that are
reading stable versions (from the TMVBT) do not need latch-coupling.
Further details of concurrency control and recovery are embedded in the
explanations of the algorithms that are described in the next sections,
alongside with more detailed explanations of the latching policy.

6.3 User Actions

We allow two kinds of user transactions to operate concurrently on the
CMVBT: read-only transactions and updating transactions. There are no
restrictions on how many transactions of either type can be running at the
same time. Read-only transactions follow the transaction model described
in Section 2.5, and updating transactions follow the model described in
Section 2.6. As in Section 5.1, we write T in the log records of user actions
to mean that the transaction identifier id(T ) is written in the log record.

For the user actions of read-only and updating transactions that op-
erate on the CMVBT index, we need to define the following algorithms:

1. update-item to perform an update action (insert or delete).

2. query-stable to query for a single key of a stable version.

3. query-transient to query for a single key of a transient version.

4. next-key-stable to query for the next key of a stable version.

5. next-key-transient to query for the next key of a transient version.

These algorithms are presented later on.
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With these algorithms, the actions of a read-only transaction are per-
formed as follows. Key-level locking is not required for read-only trans-
actions.

• begin-read-only(version v): begins a new read-only transaction;
this action takes a short-duration read lock on vcommit , reads the
value of the variable, checks that v ≤ vcommit , and records the value
snap(T ) ← v for the transaction. If the version check fails, the
transaction is not allowed to begin.

• query(key k): this action reads the value of the stable-version
variable vstable . If snap(T ) ≤ vstable , then query-stable is run to
find the correct data item from the TMVBT index; otherwise the
query-transient algorithm is run to either find the latest relevant
pending update from the VBT index or to find the latest data-item
entry from the TMVBT index. The reading of vstable is protected
by read-latching the database page p that contains the variable.
The value can be cached for the transaction, so that subsequent
queries do not need to read the page p.

• range-query(range [k1, k2)): like the query action, this action
reads the value of the stable version variable vstable . If snap(T ) ≤
vstable , then next-key-stable is run to find the set of data items from
the TMVBT index; otherwise next-key-transient is run to retrieve
the set of data items from both the VBT and the TMVBT indexes.
The set of data items is retrieved by first finding the first entry
from the range with the query (k,w) ← n(k1, snap(T )), and n is
either next-key-stable or next-key-transient , as explained above. If
k < k2, the snapshot data item (k,w) is added to the result set,
and the next data item is fetched with (k′,w′) ← n(k, snap(T )).
This iteration is continued until a data item that is outside the
queried range [k1, k2) is found, or until the algorithm n returns
no more results. To be more precise, the first entry is located
with a slightly different query algorithm because the first entry
in the TMVBT index may have the key k1, and thus the query
actually find the first entry (k,w) with k ≥ k1, instead of k > k1.
When querying for the rest of the keys, the next key must be
greater than the previous key. We have omitted the description of
the first-key-query algorithm because it is almost identical to the
next-key-query algorithm.

• commit-read-only: commits the transaction by removing it from
the system. No further actions are required.
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For updating transactions, the actions are implemented as follows.
Key-level locking is only required where specifically stated.

• begin-update: begins a new updating transaction T ; this action
creates an identifier for the transaction (id(T ) ← new identifier),
acquires a short-duration read lock on the variable vcommit , and
records the snapshot version snap(T ) ← vcommit . The action finishes
by writing the log record ⟨T , begin, snap(T )⟩, but the log is not
forced to disk.

• query(key k): this action queries the VBT and the TMVBT in-
dexes to find the data item that is alive at snap(T ). Although
snap(T ) might be stable, this action must always use the query-
transient algorithm to query both the VBT and the TMVBT in-
dexes, because the transaction might have itself updated the key k,
and pending updates are located only in the VBT index.

• range-query(range [k1, k2)): like the query action, this action
always uses the next-key-transient algorithm to query both VBT
and TMVBT indexes to locate the data items that are alive at
snap(T ) in the range [k1, k2).

• write(key k, data w): this action takes a commit-duration write
lock on the key k, and invokes the update-item algorithm to insert
a pending update into the VBT. This action writes a redo-undo log
record ⟨T , write, p, k, w, δ′, n⟩, where (1) p is the page identifier of
the VBT page on which the pending update was inserted; (2) δ′ is
the value of an overwritten pending update, if the action replaced
an earlier update created by T ; or ∅, otherwise; and (3) n is the
Undo-Next-LSN of the log record; that is, the LSN of the last
(not-yet-undone) action performed by T before this action.

• delete(key k): the operation of this action is identical to the write
action, except that in the update-item algorithm a deletion is per-
formed instead of data-item insertion, and the redo-undo log record
that is written is ⟨T , delete, p, k, w′, n⟩. We denote the possi-
bly replaced value of a pending update here by w′ instead of δ′,
because in this case, the replaced value cannot be �.

• set-savepoint: sets a savepoint and returns the savepoint identi-
fier s to the transaction. The action first writes a redo-undo log
record ⟨T , savepoint, n⟩. The savepoint identifier s is the log
sequence number of the savepoint log record.

• rollback-to-savepoint(LSN s): rolls the transaction back to a
preset savepoint identified by the log sequence number s. This

121



CHAPTER 6 CONCURRENT UPDATING OF THE MVBT

action is followed by the undo-write and undo-delete actions for
the write and delete actions performed after setting savepoint s,
executed in the reverse order. The write and delete actions are
located with a reverse scan of the log records, starting from the
last action performed by T , and by locating the previous records
via the Undo-Next-LSN pointers in the log records that point to
the log record of the previous action, until the log record for the
set-savepoint action is found for the savepoint s.

• commit-update: commits the updating transaction; this action
(1) acquires a commit-duration write lock on vcommit , (2) incre-
ments the variable vcommit ← vcommit + 1, (3) assigns a commit-
time version to the transaction commit(T ) ← vcommit , (4) adds
the mapping CTI[commit(T )] ← id(T ), (5) writes a log record
⟨T , commit, vcommit⟩, (6) forces the log onto disk, (7) releases
the lock on vcommit , and (7) removes the transaction T from the
system. The release-version action is performed by the system
maintenance transaction some time after the commit operation
has finished. The commit-time version commit(T ) can be queried
by other transactions immediately after this action has completed,
before the maintenance transaction has run.

• release-version: incorporates the updates performed by the ear-
liest transient committed transaction into the TMVBT index, and
removes the pending updates from the VBT index. This action is
implemented by the maintenance transaction that is explained in
more detain in Section 6.4.

• abort: labels the transaction as aborting and starts the backward-
rolling phase. This action writes the log record ⟨T , abort, n⟩. In
the backward-rolling phase, all the actions of the transaction are
undone, in reverse order, by following the previous-record pointers
(i.e., the Undo-Next-LSN values) in the log records. This action
is thus similar to the rollback-to-savepoint action, except that
the log is rolled back until the begin log record is encountered, at
which point the finish-rollback action is executed.

• undo-write(log record r): this action undoes a write action by
reading the log record r = ⟨T , write, p, k, w, δ′, n⟩ and by phys-
ically removing the entry (k, id(T ),w) from the index. If δ′ ≠ ∅,
then the write action replaced an earlier pending update created
by transaction T , and the undo action inserts the pending update
(k, id(T ), δ′) into the VBT index to restore the overwritten entry.
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Note that δ′ may also be �, if the transaction had deleted the
key k earlier. The undo action finishes by writing the redo-only
compensation log record ⟨T , undo-write, p′, k, w, δ′, n⟩, where
p′ is the page identifier of the VBT page on which the update was
performed. If a structure-modification operation has occurred on
page p after the write actions, it is possible that p′ ≠ p.

• undo-delete(log record r): this action undoes a delete action
by reading the log record r = ⟨T , delete, p, k, w′, n⟩ and by
physically removing the entry (k, id(T ),�) from the VBT index. If
w′ ≠ ∅, then the delete action replaced an earlier pending update
created by transaction T , and the undo action inserts the pending
update (k, id(T ),w′) into the VBT index to restore the overwritten
pending update. The undo action finishes by writing the redo-only
compensation log record ⟨T , undo-delete, p′, k, w′, n⟩.

• finish-rollback: finishes the rollback of a backward-rolling trans-
action by writing a log record ⟨T , finish-rollback⟩, forcing the log
onto disk, and by removing the transaction T from the system.

Let us now consider the algorithms required to implement the user
actions. The algorithm update-item which performs an update action
on the CMVBT index is reasonably straightforward: all that needs to
be done is to record the action to the VBT, using top-down, left-to-
right latch-coupling for tree traversal. An insertion of a data item with
key k by a transaction T with id(T ) = v is recorded by adding the entry
(k, v,w), where w is the entry value; and deletion of a data item with
key k by transaction T is recorded by adding the entry (k, v,�). If the
VBT index already contains an entry (k, v, δ′) with the same key and
version, the old entry will be replaced by the new entry. The possible
structure-modification operations on the VBT needed to accommodate
the update are performed level-by-level as separate atomic actions that
are never undone, before the installation of the update, similarly to the
SMOs for the TMVBT index (see Section 5.5).

Querying for stable versions with the query-stable algorithm is also
straightforward. When a read-only transaction queries a stable version,
the transaction can directly query for the version from the TMVBT index,
as explained in Section 5.4, by using the TMVBT query action. In this
situation, the TMVBT index can be traversed without latch-coupling,
and saved paths can be used for key-range and next-key queries without
any need to check for page validity when relatching the pages on the path.
This is possible because all pages traversed and entries read are inactive,
and thus guaranteed to remain where they are located, by Invariant 5.6.
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The read-only transaction can determine whether a version is stable by
reading the stable version variable vstable . The reading of the variable is
protected by read-latching the page on which it is stored. The latch can be
released immediately after the value of the variable has been determined.
It is also possible to read the variable value once, at the beginning of the
transaction, and then cache the result for the transaction.

When a read-only transaction is querying for a transient version, and
when an updating transaction is performing any key query, the query-
transient algorithm must be used. Both read-only and updating trans-
actions use the same query-transient algorithm for querying the index
structures, and we will thus use the term reader to refer to a read-only
transaction or an updating transaction that is performing a query action.
When the queried version is transient, the reader cannot know beforehand
which index structure contains the most recent update that precedes the
queried version. The relevant version might be the last update in the
TMVBT, or there may be an intermediate update in the VBT. For il-
lustration of such a situation, an example of the possible contents of a
CMVBT index is given in Figure 6.3. This example represents the same
logical situation as the example shown in Figure 6.2, but now the actual
entries stored in the different indexes are shown. Furthermore, when an
updating transaction has itself performed an update action, the pending
update is only located in the VBT, and it is thus not sufficient to restrict
the search to the TMVBT, even if the snapshot version snap(T ) of the
updating transaction is stable.

In the example of Figure 6.3, when performing queries that target
the transient commit-time version 5, the relevant version for key 3 is the
last update in the TMVBT index (created by transaction T3), while the
relevant version for key 2 is the update in the VBT by transaction T5
with transaction identifier 101. Both structures may need to be checked
whenever querying for a transient version. For single-key queries (with
the key given), it is sufficient to restrict the search to the VBT index if
an update on the key is found from there; only if no such update is found
from the VBT do we need to consult the TMVBT to find the latest update
on the key. However, when performing next-key queries, both structures
always need to be checked, because it is impossible to determine which
structure contains the nearest key otherwise.

Because the maintenance transaction may be moving the updates of
the move version vmove to the TMVBT during the execution of the query
action, the reader must be prepared to miss some of the updates of ver-
sion vmove in the VBT, and to possibly re-encounter some already encoun-
tered updates in the TMVBT. The situation is amended by organizing
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(1, [1,2),w1)
(2, [1,∞),w2)
(3, [2,3),w3)
(3, [3,∞),w′

3)
(4, [3,∞),w4)

TMVBT

(1,102,w′

1)
(2,101,w′

2)
(4,103,�)
(4,104,w′

4)
(6,101,w6)
(7,103,w7)

VBT

4→ 103
5→ 101

CTI

History of transactions
T1, commit(T1) = 1: Insert (1,w1) and (2,w2)
T2, commit(T2) = 2: Insert (3,w3) and delete item with key 1
T3, commit(T3) = 3: Insert (3,w′

3) and (4,w4)
T4, commit(T4) = 4: Insert (7,w7) and delete item with key 4
T5, commit(T5) = 5: Insert (2,w′

2) and (6,w6)
T6, id(T6) = 102: Insert (1,w′

1)
T7, id(T7) = 104: Insert (4,w′

4)

Figure 6.3. Example of data entries stored in a CMVBT index. This
example represents the same situation as Figure 6.2. The format of entries
in the TMVBT is (key, life span, data), and the format of entries in the
VBT is (key, transaction identifier, update). In addition to the committed
transactions, the VBT also contains the updates of two active transactions
with transaction identifiers 102 and 104.

the read actions in such a way that the VBT is always consulted first, and
the TMVBT only afterwards. This guarantees that no update is missed.

The general algorithm for query-transient is given in Algorithm 6.1.
Querying for a single key from the TMVBT index with the procedure
query-stable works exactly like the single-key query action of the TMVBT,
explained in Section 5.4, except that the third parameter is used to in-
dicate that the reader may need to read active data and must therefore
use latch-coupling when traversing the paths of the TMVBT index. Note
that the version v may be greater than the most recent version of the
TMVBT (i.e., vstable or vmove). The searches in the TMVBT still work,
because the live pages (and entries) in the TMVBT have a life span of
the form [v′,∞), which covers v.

When reading the pages of the TMVBT index, the reader can de-
termine whether a page has been invalidated by a concurrent structure-
modification operation (for example, when relatching pages on a pre-
viously released saved path) by internally caching the page-LSN before
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query-transient(k, v, T ):
1 δ ← key-query-vbt(k, v, T )
2 if δ = ∅ then // If no updates found from VBT

3 return query-stable(k, v, true)
4 else if δ = � then // If latest update in VBT is a deletion

5 return ∅
6 else // Latest update in VBT is an insertion

7 return δ
8 end if

Algorithm 6.1. Key-query algorithm for transient versions. This al-
gorithm is used by read-only transactions when querying for transient
versions, and by updating transactions when performing any key queries.

releasing latches and by then comparing the cached value to the value
in the page after it has been relatched. If the new page-LSN is greater
than the cached one, then the page has been modified by the maintenance
transaction, and it is necessary to either re-traverse the entire path from
the root of the TMVBT index or to backtrack up the saved path until an
unmodified page is found.

Querying for a single pending update from the VBT is described in
Algorithm 6.2. The algorithm generates a reverse identifier-to-commit-
time (ITC) mapping for all relevant commit-time versions, mapping the
possible updates created by the transaction itself to infinity so that they
always take precedence over other updates. A transaction identifier list I
is also generated. This list contains the transaction identifiers for which
there is a mapping in the ITC. The query-all-VBT (k, I) operation finds
all pending updates (k, v′, δ′) from the VBT with key k and transaction
identifier v′ ∈ I. This function is implemented using a standard VBT
range-query operation with latch-coupling applied when traversing in the
index. After finding all the possibly relevant updates, the key-query-VBT
function orders the updates in transaction commit order, and returns the
value δ′ of the latest update. If there are no updates on the key k in
the VBT, the function returns the null marker ∅. If the last update is a
deletion, the returned value is δ′ = �. These values must be separate so
that the single-key-query algorithm knows whether to continue searching
from the TMVBT or not.

In the example database of Figure 6.3, the reverse ITC mapping when
querying for commit-time version 5 with a read-only transaction Tr is
{101 → 5,103 → 4}. If the querying transaction is an updating trans-
action Tu with transaction identifier id(Tu) = 104, the ITC mapping is
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{101 → 5, 103 → 4, 104 → ∞}. For example, if Tu queries for key 4
(at transient commit-time version 5), the ITC is generated as explained
above, and the transaction identifier list would be I = {101,103,104}.
The query-all-VBT operation finds the entries (4,103,�) and (4,104,w′

4),
which are then converted to commit-time entries and placed in the ordered
result map Kc = {4 → �,∞ → w′

4}. The query returns the value with the
highest key from this map, w′

4, as the result.

key-query-vbt(k, v, T ):
1 ITC← ∅
2 I ← ∅
3 for each vc ∈ {vstable + 1, . . . , v} do
4 vi ← CTI[vc] // Find the transaction identifier

5 ITC[vi] ← vc
6 I ← I ∪ {vi}
7 end for
8 if T is an updating transaction then
9 ITC[id(T )] ← ∞ // Updates by T have precedence

10 I ← I ∪ {id(T )}
11 end if
12 Ki ← query-all-vbt(k, I)
13 Kc ← ∅
14 for each (k, v′, δ′) ∈Ki do
15 vc ← ITC[v′]
16 Kc[vc] ← δ′

17 end for
18 return entry Kc[vc] with highest version vc; or ∅, if Kc is empty

Algorithm 6.2. Algorithm for querying for a single key from the VBT
index.

When a user transaction T is querying for a single key k of a transient
version v > vstable , and the maintenance transaction Tm is ongoing, one of
the following situations may occur, regarding an update of version vmove

when that update is the latest update on the key k:

1. T finds the pending update in the VBT. The update has not yet
been applied to the TMVBT index. This is the normal situation,
and no special processing is required.

2. T finds the pending update in the VBT. The update has been
applied to the TMVBT by the maintenance transaction Tm. Be-

127



CHAPTER 6 CONCURRENT UPDATING OF THE MVBT

cause the pending update was found in the VBT, the TMVBT is
not searched, and thus this situation is similar to the first one.

3. T does not find the pending update of version vmove in the VBT,
because the maintenance transaction Tm has already deleted it.
Because no update was found in the VBT, the TMVBT is searched
to find the latest update. At this point, the maintenance trans-
action Tm has already applied the update to the TMVBT, so the
update is found in there.

If there is a more recent update with commit-time version vc such that
vmove < vc ≤ snap(T ), then this update will be found in the VBT in all of
the above situations, and it will be returned directly without consulting
the TMVBT index.

For next-key queries, the general algorithm follows the same structure
as the single-key query: if a read-only transaction is querying for a stable
version, the algorithm next-key-stable is used to query the TMVBT index
directly. If the queried version is transient, or if an updating transaction
is performing the range-query, the algorithm next-key-transient (Algo-
rithm 6.3) is run. In this case, both the VBT and the TMVBT must
always be searched to locate the data item with the next key.

When searching for a transient version, the next keys from both struc-
tures need to be retrieved alternatingly. In Algorithm 6.3, starting from
line 1, the current key is initialized to the previously found key. After
this, at the beginning of the infinite loop, both of the index structures
are searched to find the next key, and the algorithm checks which key is
nearest to the previously found key. If the next nearest key is found in
the TMVBT (line 5), we can return the key and the corresponding value
directly. If, on the other hand, the nearest key is in a pending update
found in the VBT (line 7), we must check whether the pending update
is an insertion (and not a deletion) before returning the key. Similarly,
if the keys fetched from both structures are the same (line 11), we need
to check that the pending update on the key in the VBT is not a dele-
tion. If the pending update is a deletion, we need to skip this key and
scan forward to find the next key. Whenever a pending deletion is found,
and the indexes need to be scanned forward, both of the structures need
to be queried again. This means that the tuple (k2,w2) found from the
TMVBT cannot be reused, because an ongoing maintenance transaction
might have changed the nearest key in the TMVBT index by inserting a
new entry (k′2,w′

2) with k′2 < k2 into the TMVBT.
Like the key-query-VBT function, the next-key-VBT function needs

to find the transaction identifiers of all the commit-time versions between
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next-key-transient(k, v, T ):
1 kc ← k // Initialize the current key

2 loop
3 (k1, δ1) ← next-key-vbt(kc, v, T )
4 (k2,w2) ← next-key-stable(kc, v, true)
5 if k1 > k2 then // Data item with next key is in TMVBT

6 return (k2,w2)
7 else if k1 < k2 then // Pending update for the next key is in VBT

8 if δ1 ≠ � then // Is δ1 an insertion or update

9 return (k1, δ1)
10 end if
11 else // Same key returned from both structures

12 if k1 = ∅ then // No next keys in either index

13 return ∅
14 else if δ1 ≠ � then // Is δ1 an insertion?

15 return (k1, δ1)
16 end if
17 end if
18 kc ← k1 // Scan forward in both indexes

19 end loop

Algorithm 6.3. Algorithm for finding the next live data-item starting
from a given key.

vstable and v, find pending updates with these transaction identifiers, and
order the updates based on their corresponding commit-time versions.
The actual implementation of the next-key query should use saved paths
to accelerate the next-key queries from the VBT and TMVBT indexes.
With saved paths, most of the consecutive next-key calls to the VBT and
CMVBT indexes will fall to the same leaf page, and they will reuse the
existing saved path without requiring any additional I/O operations. To
further enhance the operation, page fixes and latches in the VBT and
TMVBT index structures need not be released between the next-key-
query sub-operations in the main loop of Algorithm 6.3.

As an example of a next-key query, suppose a read-only transaction Tr
is querying for the key next to key 3 at version 4, in the example database
of Figure 6.3. At the beginning of the next-key-query function, the next
entries are fetched from both structures: (k1, δ1) = (4,�) (from the VBT)
and (k2,w2) = (4,w4) (from the TMVBT). Because the keys of both of
the entries are the same, the one retrieved from VBT takes precedence.
However, because it is a deletion marker, we need to continue the search
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to find the next entries. The algorithm thus continues by finding the
entries next to key 4 from both of the structures: (k1, δ1) = (7,w7) (from
the VBT) and (k2,w2) = ∅ (from the TMVBT). Because the TMVBT
has no more entries, the VBT entry is the next key, and the key-value
pair (7,w7) is returned to the user.

The following theorems state the correctness and complexity of the
user actions, expressed in terms of how many pages need to be visited:

Theorem 6.1. The update action correctly records a key update (key
insertion or deletion) in the VBT. A single update action has a cost of
Θ(logB nV ) page accesses, where nV is the number of entries in the VBT.

Proof. The update action must traverse the VBT once to insert the
update marker, so the complexity Θ(logB nV ) comes from the tree traver-
sal. As with standard B+-trees, any required structure-modification op-
erations do not affect the asymptotic complexity of the action. ◻

Theorem 6.2. The key-query action for key k and version v correctly
returns the most recent committed version v′ of the queried key, relative
to version v so that v′ ≤ v. A single key-query action for a stable version v
has a cost of Θ(logBmv) page accesses, where mv is the number of entries
in the TMVBT index that are alive at version v, and B is the page
capacity. A single key-query action for a transient version v requires at
most Θ(logB nV + (na + nt)/B + logBmvstable) page accesses, where nV is
the number of entries in the VBT, mvstable is the number of entries in the
TMVBT that are alive at the stable version vstable , na is the number of
active updating transactions, and nt is the number of transient versions.

Proof. The key-query action for a stable version performs a single-key
query action on the TMVBT, and thus has a cost of Θ(logBmv) page
accesses (Theorem 5.4). For a transient version, the VBT search requires
Θ(logB nV ) page accesses for the initial tree traversal, and at most an
additional Θ((na+nt)/B) leaf page accesses to locate all pending updates
that might be relevant to the key query. The latter part of the cost is
derived from the fact that there can be at most na + nt pending updates
that have the key k in the VBT index, and all of these may have to be
scanned. Because the entries with the same key are clustered together, it
suffices to scan (na +nt)/B VBT pages. Finally, the query for a transient
version may need to further query the stable version from the TMVBT,
thus adding the Θ(logBmvstable) term to the complexity of the action. ◻

Theorem 6.3. A range-query action for the key range [k1, k2) target-
ing a stable version v has a cost of Θ(logBmv+r/B) page accesses, where
mv is the number of entries in the TMVBT index that are alive at ver-
sion v, r is the number of entries returned by the query, and B is the
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page capacity. A range-query action targeting a transient version v has a
cost of at most Θ(mk logB nV + logBmvstable + r/B) pages, where mk is the
maximum number of discrete keys at the queried interval (for databases
that store integer keys, k = k2 − k1), and nV is the number of entries in
the VBT.

Proof. The range-query action of a stable version queries the TMVBT
index directly, and the proof is thus the same as the proofs of Theorems 5.4
and 4.2. When querying for a transient version, it is possible that there
are transient pending deletions in the VBT recorded for every possible
discrete key value in the queried range, and the algorithm must process
them all. In such a situation, the next-key-transient algorithm needs
to perform next-key queries for each possible discrete key value in the
queried range. Each of these queries requires at most a single root-to-leaf
traversal of both the VBT and the TMVBT. In the VBT, it is possible
that the saved path cannot be efficiently reused to obtain the next key
directly, because there may be other pending updates with the same key
but different versions in the way. In the TMVBT, however, the saved
path will be reused and the same number of pages need to be accessed in
total as when querying for the stable version. ◻

6.4 Maintenance Transaction

The maintenance transaction is a system-generated transaction that is
run periodically to apply the pending updates of committed transactions,
one transaction at a time, into the TMVBT index, and to delete the
pending updates from the VBT. To ascertain correct operation with
concurrent user transactions, the updates must be applied in such a way
that the system transaction does not cause user transactions to miss any
of them. This is accomplished by first applying the pending updates into
the TMVBT, then increasing the stable version variable vstable , and only
then removing the pending updates from the VBT index. A consequence
of this approach is that the user transactions must be prepared to possibly
encounter the same update twice when scanning the index structures.

The maintenance transaction performs the following steps:

1. Acquire a commit-duration write lock on the global variable vmove ,
update the variable vmove ← vstable +1, and find out the correspond-
ing transaction identifier vi ← CTI[vmove]. Reading of the stable
version variable vstable is protected by the read latch taken on the
database page on which the variable is stored.
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2. Scan through the VBT index to find the pending updates (k, vi, δ)
created by the transaction T with id(T ) = vi. Apply the updates
into the TMVBT index, changing the version from vi to vmove .

3. Update the stable version to vstable ← vmove . Updating the variable
is protected by taking a write latch on the database page on which
the variable is stored.

4. Scan through the VBT index a second time, and physically delete
all the entries of the form (k, vi, δ).

5. Remove the mapping vmove → vi from the CTI table.

The actions performed by the maintenance transaction are logged us-
ing redo-only log records. If the system crashes during the execution of
the maintenance transaction Tm, the redo pass of restart recovery will
redo all actions performed by Tm to bring the database pages into a con-
sistent state and restart the maintenance transaction. All the steps of
the maintenance transaction are idempotent, meaning that performing
them multiple times has the same effect as performing them once. That
is, f(f(x)) = f(x) for all actions f of the maintenance transaction Tm
and for all possible states x of the combined CMVBT (TMVBT + VBT)
index structure. When the maintenance transaction is restarted after a
system crash, it will automatically skip those actions that already have
been performed.

At the beginning, in step 1, the move version vmove is incremented to
record that the maintenance transaction is active. Using the actions de-
scribed for the TMVBT index in Section 5.4, the maintenance transaction
invokes the begin-update action of the TMVBT to update the active
version variable vactive of the TMVBT to vmove . In practice, however, the
active version variable should be the same as the move-version variable,
when TMVBT is used as a part of the CMVBT index.

The database management system must guarantee that there is only
a single maintenance transaction running at any time. Thus, at the very
beginning, the maintenance transaction takes a commit-duration write
lock on vmove . This action is logged by a redo-only log record ⟨Tm,
begin-maintenance, vmove , vi⟩, where vi is the transaction identifier
of the transaction that has the commit-time version vmove .

At the next step, step 2, the pending updates recorded in the VBT
are applied to the TMVBT. The maintenance transaction scans through
both structures at the same time, using a saved path for the TMVBT and
latch-coupling for the VBT. Because the system transaction is the only
transaction updating the TMVBT, no latch-coupling on the TMVBT is
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required, and only one page needs to be latched at a time, except during
structure-modification operations. Because the TMVBT does not have
sibling links, the saved path needs to be backtracked to locate the next
leaf page. Pages on the saved path can be safely relatched, because there
is no other transaction that can update the TMVBT, but pages lower
on in the path must still be unlatched before latching pages on a higher
level to maintain top-down, left-to-right ordering on page latching. In
the VBT, the sibling links assumed in Section 6.1 are used to traverse
through the leaf pages efficiently. Because Tm only reads the updates
from the VBT at this point, it is sufficient to perform a leaf-level scan,
and thus no saved path is required.

A pending update (k, vi, δ) is applied on the TMVBT by using the
actions defined in Section 5.4. If δ ≠ �, the action write(k, δ) is per-
formed; otherwise the action delete(k) is invoked. Each update that is
performed to the TMVBT is logged using redo-undo log records. The
log records defined in Section 5.4 could also be used, but they contain
undo information which is not needed, because the actions of the main-
tenance transaction are never undone. The redo-only log record written
for a write action, recorded by the pending update (k, vi,w), w ≠ �, is
thus ⟨Tm, apply-write, p, k, vmove , w⟩, where p is the page identifier of
the TMVBT page on which the update was performed. Note that the
version vmove is used by the TMVBT algorithms when applying the up-
date to the TMVBT index, because we require that vactive = vmove . The
redo-only log record written for a delete action, recorded by the pending
update (k, vi,�), is ⟨Tm, apply-delete, p, k, vmove⟩.

Step 3 updates the stable version variable vstable ← vmove . The variable
is protected by write-latching the page on which the variable is stored. At
this point we know that all the updates of transaction T with commit(T ) =
vmove have been applied to the TMVBT. New read-only transactions can
therefore perform queries that target the version vmove directly on the
TMVBT index. To speed up recovery, this action is also logged with a
single redo-only log record ⟨Tm, increment-stable, vstable⟩, and the log is
forced onto the disk at this point. If this log record is found after a system
crash, steps 1–3 of the maintenance transaction are skipped entirely, and
the maintenance transaction continues at step 4 to finish the transaction.

Next, at step 4, the pending updates are deleted from the VBT index.
It is safe to delete these updates, because although deleting the entries
may cause concurrent user transactions to miss an update they expected
to find in the VBT, the transactions will find the missed update later on
from the TMVBT, where it has already been applied to at this point.
To correctly maintain the structural consistency of the VBT, the tree
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must be traversed from the root, using a saved path, so that structure-
modification operations can be performed if pages contain too few entries
after entry deletions. During the search, latch-coupling will be applied,
first top-down, then left-to-right, as explained earlier. The delete action
for a pending update (k, vi, δ) is logged with a redo-only log record ⟨Tm,
delete-update, p, k, vi⟩, where p is the page identifier of the VBT page
on which the pending update was located.

Finally, in step 5, the temporary transaction identifier mapping is
removed from the CTI table. The maintenance transaction commits by
writing a redo-only log record ⟨Tm, commit-maintenance⟩. The log
must be forced onto disk at this point.

The following theorem states the correctness and complexity of the
maintenance transaction:

Theorem 6.4. Let n denote the number of updates applied by the ear-
liest transient committed transaction with version vmove , nV the number
of pending updates in the VBT and nT =mvmove−1 the number of entries in
the TMVBT that are alive at version vmove −1. The maintenance transac-
tion correctly transforms the transient version vmove into a stable version
by applying the updates of the version vmove into the TMVBT, and by
removing the pending updates from the VBT. The maintenance transac-
tion requires access to at most O(nV /B+min{n logB(nT +n), (nT +n)/B})
pages, where B is the page capacity.

Proof. The complexity of the maintenance transaction is composed of
the VBT and TMVBT index scans of steps 2 and 4. The complexity
of both scans of the VBT is the same, Θ(nV /B), because a full leaf-
level scan of the VBT is required for both of the steps. Maintaining the
entire saved path from root to leaf for the VBT in the deletion phase
does not add to the asymptotic complexity of the scan (see the proof
of Theorem 3.1). Applying the n updates into the TMVBT requires
O(n logB nT ) page accesses in the worst case, because a single update
operation in the TMVBT requires Θ(logB(nT + n)) page accesses (see
Section 5.4). However, the leaf pages of the search tree Svmove−1 of the
latest version of the TMVBT are accessed at most once, so the operation
is also bound by O((nT + n)/B); that is, a full leaf-level page scan of the
latest version of the TMVBT plus the new pages created by insertions. ◻

Throughout this chapter, we have assumed that a single thread or
process is running a single maintenance transaction to apply the updates
of a single committed transaction from the VBT into the TMVBT at a
time. If the maintenance transaction becomes a bottleneck for the sys-
tem, it should be possible to extend the algorithms presented here so that
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multiple threads or processes run multiple maintenance transactions con-
currently. The multiple maintenance transactions still have to apply all
the updates of a single committed transaction at a time, before starting
to move the updates of another committed transaction, because only the
updates of a single version can be applied to the TMVBT at a time (see
Section 5.6). In this approach, the maintenance transactions are set up
to scan different portions of the VBT index each, and to apply the up-
dates to the TMVBT concurrently. Because there are now more then one
transaction updating the TMVBT index, all the updating transactions
have to perform latch-coupling while traversing the TMVBT index, be-
cause the active pages may be modified by a concurrent instance of the
maintenance transaction.

Another approach for multithreading the maintenance transaction is
to allow step 4 of the maintenance transaction for a version v1 to run
concurrently with step 2 for the next version v2. This means that the
updates of version v2 can be applied into the TMVBT at the same time
as the pending updates of version v1 are deleted from the VBT by another
thread, or group of threads.

6.5 Summary

We have now described the concurrent MVBT (CMVBT), a general-
purpose multiversion database structure that can be used concurrently
by multiple updating transactions. The CMVBT is optimal when query-
ing for stable versions, provided that the correct root page of the TMVBT
index is known (see Section 5.7). When querying for transient versions,
the separate VBT index must also be searched. However, because the
VBT is expected to remain in main memory during normal transaction
processing, these queries should not require any additional disk I/O op-
erations.

The update actions of user transactions are efficient, because the pend-
ing updates are inserted into the small VBT index. This improves the
latency of transactions, but does not increase the overall system through-
put, because the maintenance transaction still needs to apply the pending
updates into the main TMVBT index. As we will show in the next chap-
ter, the overall performance of the CMVBT is on par with the TSB-tree
of Lomet and Salzberg [54–59], indicating that the main-memory-resident
VBT index does not affect the performance of CMVBT significantly.
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CHAPTER 7

Evaluation of CMVBT and TSB-tree

We have now described our multiversion index structure, the concurrent
multiversion B+-tree (CMVBT), in the previous chapter. In this chap-
ter we show that the CMVBT performs well under general transaction
processing. For this purpose, we have implemented a software library for
running tests on database index structures. The relevant implementation
details are described in Section 7.1. We have analyzed the performance
of the CMVBT experimentally and compared it to the time-split B+-tree
(TSB-tree) of Lomet and Salzberg [58, 59], which is used as the basis of
Immortal DB [55–57]. The tests are described in Section 7.2, and the re-
sults of the tests are given in Sections 7.3 and 7.4. We have also evaluated
the performance of the TMVBT in itself, so as to measure the effect of
having a separate VBT index for storing the updates of active transac-
tions. In addition, we have run the tests on the VBT index on its own to
demonstrate that, when a single-version index structure is used to store
multiversion data, the range queries are not efficient. This was discussed
in Section 3.2. The test results for these indexes are shown in Section 7.5.
We summarize the findings from the tests in Section 7.6.

7.1 Implementation of the Index Structures

Our TreeLib database index software library is implemented using the
Java language. We have implemented several common database index
structures and a test runner that can be used to generate and execute
query workloads that are indexed in the implemented index structures.
The pages of the index structures are stored onto disk in a single file using
standard Java file I/O routines, which are sufficient for evaluating the
performance differences of the various index structures. Page identifiers
mark the position (address) of the database page inside the file, so that a
page p is located at byte positions [pBb, (p + 1)Bb), where Bb is the size
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of database pages, in bytes. This is a common design that is presented
in database textbooks [32]. The first page of each block of 8Bb pages is a
page allocation bitmap that tells which pages are currently in use. Each
page-allocation bitmap b contains 8Bb bits which are set so that the ith
bit in b is one if and only if the page b + i is currently in use.

The software includes a working page buffer with a least-recently-used
(LRU) page-replacement policy. The page buffer is based on a hash table
that is interleaved with free/used page lists, and has an expected O(1)
access time for querying, inserting, or removing a page in the buffer. Be-
cause the structure is based on a hash table, the theoretical worst case
complexity of the operations is O(n). All the index structure algorithms
in TreeLib fix pages to the page buffer, but page latching is not imple-
mented. The database software can therefore be used by only one client
at a time. Similarly, we have not yet implemented any key-level locking
operations for transactional concurrency control, nor does the software
perform any logging, which means that recovery is not possible. None of
these omissions should affect the accuracy of our experiments, however,
because we are not evaluating the performance of the concurrency-control
or recovery algorithms.

We have not tried to optimize the absolute performance of the various
components of the TreeLib software; rather, we have focused on imple-
menting the structures correctly and on measuring the number of page
accesses required. The Immortal DB articles [54, 55], for example, ex-
plain how the entries should be compressed in the leaf pages. Graefe and
Larson [31] suggest different techniques for optimizing the cache sensitiv-
ity of the index structure, including using microscopic B-tree structures
inside single database pages. Techniques such as these should indeed be
applied when building a commercial database system. We have omitted
these optimizations from our software, because the index structures we
are comparing are very similar in structure, and any optimization that
can be applied to one could most probably be applied to the others as
well. We have measured how many pages each operation needs to fix
to the page buffer (buffer fixes), how many pages are actually read from
disk (page reads), and how many pages need to be written back onto
disk (page writes). In addition, we have measured the real time taken by
the different operations. Because all the index structures to be compared
have been implemented in the same software library, and all without final
optimizations, the comparisons should be fair.

For our tests, we have implemented the VBT (Section 3.2), TMVBT
(Section 5), CMVBT (Section 6), and TSB-tree (Section 4.2) index struc-
tures. When the VBT is used as a multiversion index structure on its
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own, we call it the multiversion versioned B+-tree, or MV-VBT. In all
these structures, the data associated with each entry is a four-byte inte-
ger assumed to be a pointer to the data indexed by the structure. The
indexes in our tests are therefore dense. The TMVBT, TSB-tree, and the
TMVBT index used in the CMVBT all have identical page formats for
index pages. The MV-VBT and the VBT index used in CMVBT both
have a more compact index-page entry format, because they are B+-trees.

The MVBT article [8] suggests that data items be stored as tuples of
the form (k, v1, v2,w), where v1 denotes the creation time of the data item,
and v2 the deletion time (see Definition 2.1 on page 11). The version range
[v1, v2) thus gives the life span of the data item. This format is however
not well suited for the TSB-tree index, because the TSB-tree also needs to
store entries with temporary transaction identifiers. Instead, we use the
format suggested in Section 3.2 (tuples of the form (k, v1,w) for insertion
and (k, v2,�) for deletion) in the TSB-tree. For fairness of comparison,
we use this leaf-page entry format in all the index structures for storing
the leaf-page entries.

A summary of the page formats in the different index structures is
given in Table 7.1. The TSB-tree can store slightly fewer entries in its leaf
pages because it has to store additional information to separate the entries
that been lazily timestamped from the entries that still have transaction
identifiers instead of commit-time versions.

MV-VBT TMVBT TSB-tree

Page size 4096 B 4096 B 4096 B

Index entry size 12 B 20 B 20 B
Index page capacity (entries) 338 203 203

Leaf entry size 12 B 12 B 12 B
Leaf page capacity (entries) 338 338 335

Table 7.1. Page formats for different index structures. The TMVBT and
VBT indexes used in the CMVBT database have page formats that are
identical to the TMVBT and MV-VBT indexes described in this table,
respectively.

With the CMVBT structure, we store the TMVBT index on disk
storage. As described in Section 6.1, the VBT is designed to be a main-
memory-based structure, and thus does not need to be backed onto disk.
In our implementation, we have dedicated a part of the page buffer for
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the VBT, big enough to guarantee that the VBT resides entirely in the
buffer in all our tests. For fairness of comparison, the combined size of the
VBT page buffer and the TMVBT page buffer is the same as the buffer
size used for the other indexes. In practice, we have used a total buffer
size of 200 pages for all the database indexes. The CMVBT splits the
capacity into 32 pages for the VBT, and 168 pages for the TMVBT index.
This buffer size is large enough so that it is not totally unrealistic, but
small enough so that pages will have to be flushed back onto disk during
transaction processing. Kollios and Tsotras have used a page buffer size
of 10 pages [45], and van den Bercken and Seeger have varied the buffer
size from 0 to 200 pages in their experiments [10]. Additionally, we have
implemented the root∗ search structure as a B+-tree, and stored it onto
the disk. The root∗ is used to locate the roots of historical versions in the
TMVBT (see Definition 3.4).

In the CMVBT tests, all our page buffer measurements (buffer fixes,
page reads and writes) include operations performed on the TMVBT in-
dex, the VBT index and the root∗ search structure. The operation cost of
the maintenance transaction is also included in our tests. In practice, if
the maintenance transaction is run immediately after transaction T com-
mits, we include the cost of the maintenance transaction into the cost
of the last action performed by transaction T . At each invocation, the
maintenance transaction is run as many times as is required to move the
updates of all committed transactions into to TMVBT index. This is
fair when discussing the average action costs, but it also means that the
standard deviations of the actions are strongly biased, because the test
data now contains actions that seem to take hundreds or even thousands
of buffer fixes and page reads. We have left the standard deviations out
as they do not convey any meaningful information for the CMVBT index.

The version condition variables of the TMVBT [8, 35] are set to the
values given in Section 5.3, so that the absolute minimum number of live
entries in the pages (both leaf and index pages) is min-live = 1/5B, and
the split tolerance is min-live = 1/5B, where B is the page capacity. This
means that after any page-split operation, all pages involved in the SMO,
except the parent page, must contain from 2/5B to 4/5B live entries. At
other times, the pages can contain from 1/5B to B live entries; otherwise a
structure-modification operation is triggered. The details of the structure-
modification operations are described in Section 5.5.

The frequency of the maintenance transaction directly affects the
CMVBT performance, because the VBT index is not an optimal structure
for storing multiversion data. It is thus important to keep the VBT as
small as possible by running the maintenance transaction often, prefer-
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ably whenever an updating transaction has committed. To measure the
effects of the maintenance transaction, we have run our tests with different
settings for the frequency of the maintenance transaction.

For the TSB-tree index, we have implemented the algorithms based on
published literature [54–59]. The implemented structure is based on the
structure described in the initial TSB-tree articles [58, 59] and the updates
described in the Immortal DB articles [55–57]. We have implemented
three variants of the TSB-tree: one with the splitting rules based on
the deferred split policy [57] (denoted TSB-D), one with the WOB-tree
split policy [56] (denoted TSB-W), and a third one with the isolated-key-
split (IKS) policy from the TSB-tree performance evaluation article [59]
(denoted TSB-I).

We use a data-page key-splitting threshold of 0.67 for the deferred
and WOB-tree split policies of the TSB-tree (TSB-D and TSB-W), be-
cause our implementation does not do any version compression (see the
Immortal DB article [56] for details). For index pages in all variants, we
find a split time at which historical index terms can migrate to a his-
torical node without any current index terms ending up there as well.
These policies are explained in more detail in the aforementioned arti-
cles. We have also implemented the persistent timestamp table and lazy
timestamping [54, 55]. These are required in order to change the tem-
porary transaction identifiers to commit-time versions after a transaction
has committed. The persistent timestamp table (PTT, see Section 4.3)
is stored onto disk as a standard B+-tree, and the page operations re-
quired for its maintenance are included in the TSB-tree measurements.
The TSB-D implementation includes the batch updating of the PTT [57].
In practice, the PTT is only updated when the database is shut down;
that is, once for each test run.

Finally, the CMVBT structure contains the commit-time-to-identifier
(CTI) table, and the TSB-tree has a volatile timestamp table (VTT)
which is used as a cache for the entries of the PTT. Both of these struc-
tures are temporary, and do not need to be backed onto disk or logged,
because they can be recreated after a system crash. The temporary struc-
tures are implemented as main-memory Java collections, and operations
on these structures cause no disk or page buffer accesses.

7.2 Test Workloads

We have run two types of tests to analyze the performance of the in-
dex structures: single-key query-update tests and range-query tests. The
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query-update tests contain both reads and updates, and the range-query
tests consist of range-queries targeting different versions of the database.
For the query-update tests, we have generated an initial database state
that contains a million live entries, created in such a way that the data-
base history also contains some deletions. For the range-query tests, we
have created new states by logically deleting the live data items of the
initial state, so that each deleted state has successively fewer live entries
left. At the last state, all the data items have been deleted. The states
are explained in more detail below.

The tests themselves consist of pregenerated workloads that are run
sequentially. For the query-update tests, we have created two sets of work-
loads, one with shorter transactions and another one with longer transac-
tions. The workloads for shorter transactions consist of 2000 transactions
with five actions each, and the workloads for longer transactions con-
sist of 100 transactions with 100 actions each. All workloads therefore
contain 10 000 actions. For each workload, we set a probability for any
transaction to be an updating transaction. The workload with an up-
date probability of 0 % thus contains only read-only transactions; and the
workload with update probability of 100 % contains only pure updating
transactions without queries. These tests were run on the initial state of
the database, and the database state was restored after each test.

Other authors have used varying transaction lengths in their database
experiments; for example, di Sanzo et al. use transactions that consist
of an expected 20 actions each [79], Kumar et al. have used a single ac-
tion per transaction [49], Tzouramanis et al. have used 300 updates per
transaction [91], Silva and Nascimento have used from 100 to 5000 up-
dates [83], whereas Lomet et al. have used up to 32 000 updates in a
single transaction [55]. Our experiments are designed to show the differ-
ences of the index structures under normal transaction processing. For
extremely long-running transactions, it may be better to stop the mainte-
nance transaction, and to apply a single long-running transaction directly
into the TMVBT.

Because the total number of transactions in a single workload is not
very high, we did not select the transaction types purely at random, but
rather forced the number of updating transactions in the workload to ex-
actly match the selected updating transaction probability. The workload
with 20 % updating transactions therefore contains exactly 20 % updating
transactions and 80 % read-only transactions. The read-only transactions
consist of single-key queries, and the pure updating transactions are ei-
ther inserting transactions or deleting transactions, with 50 % percentage
each (this selection was purely random).
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All keys in the workloads have been selected with a uniformly random
distribution from a predetermined range of [0,2 000 000 000). For key
queries and deletions, we have first selected a random key and located
the nearest-matching key actually present in the database at the queried
version during the generation of the workload. The key located in this
manner has then been stored in the workload, and used in the actual tests.
According to Ailamaki et al. [1], results from simple tests such as these
have been found out to be substantially similar to results obtained from
full-blown TPC-D workloads. We are thus confident that tests generated
in this way can be used to find out interesting properties of the efficiency
of the database. Binder et al. [15, 16] also use randomized workloads that
are processed sequentially.

The initial state was created by an updating workload that consists of
100 000 transactions. Each of these transactions contains either 20 inserts
or 20 deletes, which leads to a total of 2 000 000 actions for the entire index
creation workload. The probability of an inserting transaction is 75 %
for the initial database creation workload. The generated database thus
contains 1 000 000 live entries, the database history has 100 000 versions,
and there are some deletions present in the history. This size should be
enough to observe the differences in the performance of the various index
structures. Van den Bercken and Seeger have used a database created
with 100 000 single-action transactions for their experiments [10], while
Binder et al., di Sanzo et al., and Tzouramanis et al. have used an initial
database that stores 10 000 entries [15, 79, 91].

The deleted states del-i were created by deleting the live data items.
The number i of a state del-i denotes the total percentage of live data
items deleted at that state. We deleted the data in ten steps, creating a
state from each of the steps. Each deletion workload consists of 10 000
transactions that delete ten random data items each. The del-0 state is
thus identical to the initial state, the del-50 state has 50 % of the live
entries of the initial state still alive, and the logical database at the del-
100 state contains no live entries.

The initial, the half deleted, and the fully deleted states are summa-
rized in Table 7.2. The table shows the number of entries in the index
structure and the number of pages used. As can be seen, the MV-VBT
index is clearly the most compact structure, because it never creates du-
plicate copies of entries to other pages. The TMVBT index requires about
the same number of pages regardless of whether it is used on its own, or
as a part of the CMVBT index, which is not surprising. Because of the
more frequent page splits, the CMVBT requires from 10 % to 60 % more
database pages than the TSB-tree. The TSB-tree variant that uses the
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Live Total All Leaf C.time
del-0 entries entries pages pages H (min)

CMVBT 1 000 000 4 407 606 16 089 15 870 3 31.4
TMVBT 1 000 000 4 420 773 16 170 15 961 3 33.4
TSB-D 1 000 000 3 396 196 13 104 12 793 4 42.6
TSB-W 1 000 000 3 404 358 14 176 13 894 4 41.2
TSB-I 1 000 000 2 502 629 10 609 10 858 4 40.7
MV-VBT 1 000 000 2 000 000 8407 8372 3 29.0

Live Total All Leaf C.time
del-50 entries entries pages pages H (min)

CMVBT 500 000 5 077 804 19 724 19 463 3 13.6
TMVBT 500 000 5 074 473 19 714 19 458 3 13.6
TSB-D 500 000 3 746 547 16 438 16 070 4 15.3
TSB-W 500 000 3 715 423 16 334 16 005 4 14.8
TSB-I 500 000 2 834 108 13 387 13 072 4 14.2
MV-VBT 500 000 2 500 000 10 485 10 441 3 10.6

Live Total All Leaf C.time
del-100 entries entries pages pages H (min)

CMVBT 0 6 021 509 25 026 24 689 0 9.5
TMVBT 0 6 034 161 25 076 24 740 0 9.7
TSB-D 0 3 844 617 18 169 18 578 4 13.3
TSB-W 0 3 820 102 18 587 18 195 4 13.2
TSB-I 0 2 958 763 16 207 15 827 4 12.5
MV-VBT 0 3 000 000 13 280 13 213 3 10.6

Table 7.2. Summary of database states. The column H tells the height
of the current-version search tree Svcommit , and the last column tells the
creation time of the database states, in minutes, as measured from the
previous reported state. TSB-D denotes the TSB-tree variant with the
deferred split policy, TSB-W denotes the variant with WOB-tree split
policy, and TSB-I the variant with IKS split policy.
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IKS split policy [59] is clearly the smallest, requiring only about 25 %
more pages than the MV-VBT. Remember from Sections 4.2 and 5.5
that the asymptotic space complexity of all the index structures is the
same; that is, O(n/B), where n is the number of updates performed on
the index, and B is the page capacity. We have not presented a direct
proof for the space complexity of the VBT (MV-VBT) index, but because
the VBT is a B+-tree that always stores each update as a single entry in
its leaf pages, it has the same space complexity as the MVBT [7, 8], and
thus also of the TMVBT and TSB-tree.

Table 7.2 also shows the creation times of the database states, mea-
sured in minutes. The creation time of the state del-50 includes all the
changes applied starting from the initial state del-0, and the creation time
of the state del-100 includes all the further changes applied starting from
the state del-50. Remember that no bulk loading was applied, and all
the database states were created by repeated single-key update actions;
that is, insertions and deletions. Unsurprisingly, the initial state of the
MV-VBT was fastest to create, because the MV-VBT is a B+-tree. Note
however that it was faster to create the last state del-100 of the CMVBT
index than the last state of the MV-VBT, because the current-version
search tree of the CMVBT had shrunk in size. It seems that overall the
creation of the CMVBT index is slightly faster than the creation of the
TSB-tree variants, if the CMVBT maintenance transaction is allowed to
run often. In the creation of the states, the maintenance transaction was
run after each transaction had committed.

The computer system on which the tests were run is described in
Table 7.3. The details of the computer system naturally do not affect the
buffer fixes and file I/O operation counts, only the real time taken by the
tests.

7.3 General Transaction Processing

We begin our experiments by comparing the CMVBT index with the
TSB-tree variants in general transaction processing. Summaries of the
query-update tests are shown in Figures 7.1, 7.2, and 7.3. The figures
show two graphs each, one run with the short-transaction workloads and
another with the long-transaction workloads. The graphs show buffer
fixes, page reads and the real time required for each test. The x-axis
in the graphs represents the percentage of updating transactions in the
workload. The percentages were set to 0 %, 10 %, 20 %, . . . , 100 %. For
actual numeric results, refer to Tables A.2 and A.3 in Appendix A.
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Hardware

Processor Intel Core 2 Quad Q6600, 2.40 GHz
Main Memory 4 GB DIMM 667 MHz
Hard Disk Hitachi HDS721616PLA380

Software

Operating System Linux, Fedora Core 8
Kernel 2.6.26.8

Java Version 1.6.0 04

Table 7.3. Test computer system.

As explained in Section 7.1, we believe that the interval of the mainte-
nance transaction affects the the performance of the CMVBT structure.
We have therefore run the tests with varying settings for the maintenance
interval; namely, the value m ∈ {1,5,10,50}. A value m indicates that we
allow m transactions to commit before running the maintenance trans-
action. When the maintenance transaction is run, it is run m times to
apply the updates of all the committed transactions into the TMVBT
index. In the figures presented here, for clarity, we show the range of the
values obtained by running the CMVBT tests with different maintenance
intervals. The absolute values for the different settings of m are shown in
Tables A.2 and A.3, and in a summary figure (Figure 7.8).

As can be seen from the graphs of Figure 7.1, with longer transactions
all variants of the TSB-tree access an almost constant number of four
pages per action regardless of the amount of updates. This number comes
almost directly from the height of the TSB-tree index, with occasional
structure-modification operations and timestamp maintenance bringing
the average a bit above four. With shorter transactions, increasing the
percentage of updating transactions increases the number of buffer fixes
required per action. This trend is caused by a global database-information
page which needs to be updated in both structures when an updating
transaction begins and commits. Because this happens only once per
transaction, the effect is not seen with longer transactions.

There is greater variance in the number of buffer fixes for the CMVBT
index, depending on the frequency of the maintenance transaction, both
with shorter and longer transactions. When transactions are long, the
CMVBT performs best when the maintenance transaction is run imme-
diately after each transaction commits. When transactions are short and
over 70 % of transactions are updating transactions, the CMVBT is more
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Figure 7.1. Number of buffer fixes for queries and updates. The x-axis
shows the percentage of updating transactions in the workload. Note
that the results for all TSB-tree variants are almost identical, and thus
the lines are drawn on top of each other.

efficient when the maintenance transaction is run after a few transac-
tions have committed. In this situation the structure benefits from batch
updating, because the VBT clusters the updates together. The same
approach is used to increase performance in the differential indexes of
Pollari-Malmi et al. [72]. However, the CMVBT only benefits from less
frequently run maintenance transactions in this specific case. Our gen-
eral recommendation is to run the maintenance transaction as often as
possible, with best results achieved in the majority of different transac-
tional workloads if the maintenance transaction is run immediately after
an updating transaction has committed.
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Figure 7.2. Number of page reads for queries and updates.

In database performance evaluation, the disk I/O operations are the
critical operations that should be minimized, as discussed in Section 3.1.
Our definition of the cost of an action (Definition 3.2) is based on the
number of page accesses, because this is a natural way of determining how
large portions of the database the operation must access. In a database
system, the database pages are accessed through a page buffer that caches
the page data. If a page is used often, it is kept in the page buffer, and
consecutive page accesses do not cause disk I/O operations to occur. The
number of page accesses (that is, buffer fixes) may thus be significantly
different from the number of actual page read operations required for an
action. We have measured the number of times a page was read from
the disk to the page buffer (page reads), and the results are shown in
Figure 7.2.
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Figure 7.3. Real time taken by queries and updates. The x-axis shows
the percentage of updating transactions, and the time is shown in seconds.

As expected, the TSB-tree again requires an almost constant num-
ber of page reads per operation. Somewhat surprisingly, the interval of
the maintenance transaction does not seem to affect the number of pages
read per action for the CMVBT, with this number constantly being lower
than the corresponding one for the TSB-tree. This can be explained by
the fact that a large enough portion of the page buffer is reserved for the
VBT index, and the VBT pages do not need to be re-read from disk. In
our tests, the VBT required at most 20 pages when all the transactions
were long updating transactions (100 updates) and the maintenance in-
terval was very long (run every 50 transactions). In this situation, up to
5000 updates were stored in the VBT. On the average, the size of the
VBT was only a few pages. Another interesting point seen from these
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figures is that the frequency of updating transactions does not seem to
affect the number of pages read, even for the short-transaction workload.
This means that the updating of the global database-information page
does not affect the number of pages read, even though it clearly has an
effect on the number of buffer fixes required. However, this only shows
that the information page is kept in the buffer because it is used often
and thus does not need to be re-read into the page buffer.

Finally, the real time taken by the tests is shown in Figure 7.3. The
figures are shown here for completeness—we should not infer too much
from them, because there are many implementation details that can affect
the run-time of the tree structure algorithms. On a general level, we can
see that none of the compared index structure variants is clearly better
than the others.

The purpose of the query-update tests was to show that the CMVBT
performs on par with the TSB-tree in general transaction processing. We
have also ran the query-update tests on the del-50 database state (where
half the indexed data items have been logically deleted), and the results
were exactly as expected—the buffer fixes for each operation were prac-
tically identical, but all the tested indexes required slightly more page
fixes because the indexes had accumulated more historical entries. All
the graph shapes were the same, and thus the second test only confirms
the findings from the first test. The numerical values obtained from these
tests are shown in Tables A.4 and A.5 in Appendix A.

7.4 Range Queries

Our next tests show that the CMVBT structure benefits from the fact
that the underlying TMVBT structure merges pages and thus causes
the search trees of later versions to shrink. To verify this, we have run
range-query tests at the various del-i states, querying for the most recent
version vcommit at each state. Summaries from these tests are shown in
Figures 7.4, 7.5, and 7.6; and the actual numerical results are shown in
Table A.6 in Appendix A.

The figures show the buffer fixes, page reads and the real time taken
by range queries of the most recent version vcommit of the database, per-
formed at the different database states. The reported values are averages
for 1000 transactions, each consisting of a single range query. Van den
Bercken and Seeger have also used transaction workloads consisting of
1000 range queries in their experiments [10]. In our range-query tests,
the starting point of each range was randomly selected from the entire
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Figure 7.4. Buffer fixes for current-version key-range queries. The x-axis
represents the percentage of entries that have been deleted from the initial
state. Queried range size is 5 % of the entire key-space size.
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Figure 7.5. Page reads for current-version key-range queries.

key space that was used to populate the index, and the range size was
set to 5 % of the key-space size. In this test, the number of page reads
per operation is close to the number of buffer fixes, because the ranges
fill up a large portion of the page buffer and there is very little page reuse
between different range queries. The del-0 state (that is, the initial state)
in the figures shows a baseline value for the range query efficiency. Based
on the baseline value and on an overview of the graphs, the CMVBT is
slightly more efficient with range queries in general, except for the TSB-D
variant. This can be explained by the different splitting policies used in
the TSB-tree and the TMVBT.
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Figure 7.6. Real time taken by current-version key-range queries. The
time is measured in seconds.

The optimality of the TMVBT index can be seen when more items are
deleted. Because the TMVBT index merges pages, the current-version
search tree contains fewer pages and thus the searches become faster.
When all the data items have been deleted, the current-version search
tree is empty, and the TMVBT does not have to access any pages (the
page identifier of the root of the current-version search tree is cached in
our TMVBT implementation). None of the TSB-tree variants benefit
from deletions, because pages are not merged and page key ranges never
grow. This trend is seen clearly from both the buffer fixes and the page
reads.

Even though the number of pages the TSB-tree needs to process does
not decrease, the run-time of the TSB-tree does decrease in the del-i
states, as seen from Figure 7.6. This is partly an implementation issue,
and partly it may be caused by the lazy timestamping of the TSB-tree.
Whenever processing a page in the TSB-tree, we have to check whether
there are any committed entries that still have temporary identifiers, and
to change those that are found. The number of page writes (shown in
Table A.6 in Appendix A) verifies that the TSB-tree needs to write back
some pages, because some entries in the pages have been lazily time-
stamped during the range queries.

7.5 MV-VBT and TMVBT

When running the query-update tests, we also ran the tests by using the
versioned B+-tree as a multiversion index (MV-VBT) on its own. The
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results for the MV-VBT, shown in Tables A.2–A.6, seem to suggest that
the MV-VBT index is surprisingly efficient in general transaction process-
ing. The explanation to this is that the query-update tests all target single
keys, which are ordered and optimally indexed by the MV-VBT. The MV-
VBT index is more compact and the structure-modification operations are
simpler, targeting at most three pages at a time. The problematic actions
with MV-VBT are range queries, as demonstrated by Figure 7.7. The fig-
ure shows the number of buffer fixes required for processing the range
queries at the various states of the database. It is clear from the figure
that the MV-VBT index is not efficient for processing range queries.
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Figure 7.7. Number of buffer fixes for range queries. The x-axis rep-
resents the percentage of entries that have been deleted from the initial
state. Queried range size is 5 % of the entire key-space size.

Our CMVBT index is composed of a TMVBT index and a VBT index,
as described in Chapter 6. We have shown that the CMVBT benefits
from the separate VBT index with long transactions, because the updates
are clustered in the memory-resident VBT pages and applied as a batch
operation to the TMVBT. We now compare the TMVBT index in itself
with the combined CMVBT index. We show the number of buffer fixes
required for the query-update tests by the TMVBT index in Figure 7.8,
alongside with the results for the CMVBT. In the tests, the interval of
the CMVBT maintenance transaction was again varied.

Figure 7.8 shows that the TMVBT clearly requires fewer buffer fixes
than the CMVBT with shorter transactions, regardless of the interval of
the CMVBT maintenance transaction. However, the page reads and the
real time taken by the tests are practically the same, as can be verified
from the result tables in Appendix A. This means that the actual disk I/O
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Figure 7.8. Number of buffer fixes for queries and updates. The x-axis
represents the percentage of updating transactions in the workload. In
the legend, m denotes the maintenance interval (maintenance transaction
run after m transactions).

operations required by the TMVBT and the CMVBT are almost the same,
and thus the separate VBT index does not incur any serious performance
loss. In fact, as shown by the longer transactions, the CMVBT requires
fewer page fixes than the TMVBT with long updating transactions, if the
maintenance transaction is run frequently.
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7.6 Summary

We have shown in this chapter that the CMVBT index performs on par
with the TSB-tree index in general transaction processing, and outper-
forms the TBS-tree in range queries in the presence of logical data-item
deletions. We have further confirmed that the single-version B+-tree index
in itself is not suitable for general multiversion transaction processing, be-
cause the range-query operation is not efficient, and we have shown that
the separate VBT tree used in the combined CMVBT index does not de-
grade the overall performance of the CMVBT significantly in any of the
tested situations. The main TMVBT index structure remains optimal in
the presence of any user transactions. We thus recommend the CMVBT
structure for general transaction processing, especially when deletions are
frequent, and when the current-version range query performance is criti-
cal.

The optimality of the TMVBT index does mean that the index size
is larger than the size of the other index structures. As shown in Ta-
ble 7.2, the TMVBT index in the CMVBT may take up to 10 % to 60 %
more space when compared to the TSB-tree. If space usage is the most
critical concern, the TSB-tree is a better option. On the other hand, if
range queries are never needed, the versioned B+-tree packs the data even
tighter, and performs well with single-key queries.

We have not run any tests to analyze the performance of aborting
transactions. We can, however, show that aborting transactions are more
efficient in the CMVBT than in the TSB-tree. This is because in the
CMVBT the pending updates that have to be removed when a transaction
aborts are clustered in the small VBT index, whereas in the TSB-tree we
have to search through the main index to undo the actions of the aborted
transaction. More specifically, suppose that a committed transaction in
the CMVBT index needs to access cc pages, and the same transaction in
the TSB-tree needs to access ct pages. As our tests have shown, cc ∼ ct in
most cases. Now, let us denote by ac and at the number of page accesses
required when the transaction aborts and rolls back, instead of commit-
ting. In the TSB-tree, at > ct, because the updates of the transaction have
already been applied to the index structure, and have to be physically un-
done. In fact, at can be almost twice as large as ct if all the updates of the
transaction have been applied to different leaf pages. In contrast, in the
CMVBT, ac < cc, because the number of page accesses for a committing
transaction include the deletion of the updates of the transaction from the
VBT index by the maintenance transaction. In practice, for an aborting
transaction, the maintenance transaction does not have to perform the
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first scan of the VBT, and the TMVBT does not need to be accessed
at all. We can thus conclude that aborting transactions are by nature
more efficient when the pending updates created by active transactions
are stored in a separate, small, main-memory-resident index structure.

The test data in our workloads has been generated by randomly se-
lecting keys with a uniform distribution. We have also tested whether a
different distribution would cause the results to differ by running separate
tests on a data set that was generated by selecting random numbers with
a Gaussian distribution that is clustered around the middle of the key
space. The data set thus contains many entries near the middle key, and
almost none near the endpoints. We used uniform distribution to create
the range-query and query-update workloads, however. The results from
these tests are shown in Appendix B. As the tables show, the relative
performance of the indexes was very close to the relative results of the
test with uniform distribution (Appendix A). The most notable differ-
ence between the different random distributions is that the range query
tests were less efficient overall (requiring up to 50 % more time) with the
Gaussian distribution, and the single-key queries and updates required
about 40 % fewer page reads. The efficiency of queries and updates can
be explained by the queries that targeted keys near the endpoints of the
key range; because there are few entries near the endpoints, there is more
page reuse between actions. The range queries took more time because
some queries near the middle of the key range had to process significant
portions of the database (at most about 20 % of the live entries instead of
5 %). Most importantly, however, the relative performances of the com-
pared database indexes remained the same, and the Gaussian tests thus
confirmed the results of the original tests.
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Conclusions

A current trend in database systems is that the history of the database
contents must be accessible, in addition to the current state of the data
set. The traditional single-version B+-tree index can be straightforwardly
extended so that multiversion data may be indexed by it, but the ver-
sioned extension is not efficient, as was shown in Chapter 3. The problem
with this approach is the range-query action, which is inefficient because
the data items with the same key but with different versions are clus-
tered close to each other, while the data items with the same version but
with different keys are not. Efficient indexing of the data set evolution
therefore requires a multiversion index structure.

When querying for any fixed version v, an optimal multiversion index
structure should be as efficient as a single-version index structure that only
indexes the data items that are alive at version v. We have defined this
as the requirement for optimality of multiversion indexes (Definition 3.3
in Section 3.3). This guarantees that range queries remain efficient even
if the database accumulates a long history of updates. When data items
are logically deleted, the range queries that target the latest committed
version should become more efficient as fewer data items are alive. Range
queries are an important operation in a general-purpose database system
because index scans and joins are based on them.

We have reviewed three of the most efficient multiversion index struc-
tures in Chapter 4. These are the TSB-tree of Lomet and Salzberg [58, 59],
the multiversion B+-tree (MVBT) of Becker et al. [7, 8], and the multi-
version access structure (MVAS) of Varman and Verma [92]. From these
structures, only the MVBT is considered optimal by our definition of opti-
mality. The problem with MVBT and MVAS is that they follow a single-
update model, in which the update cannot be rolled back, and therefore
these indexes cannot be used as general database indexes in a transac-
tional multi-user environment. On the other hand, the TSB-tree does
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not have this restriction, but it does not guarantee any optimal bounds
for the range-query performance, either. In particular, in the presence of
logical deletions, the performance of the TSB-tree degrades because the
leaf pages of the index structure are not merged.

As an initial step, we have introduced transactions to the MVBT by
redesigning it, as described in Chapter 5. The redesigned transactional
MVBT (TMVBT) index retains the optimal bounds of the MVBT and
allows one updating multi-action transaction to operate concurrently with
multiple read-only transactions. The TMVBT index is an efficient index
structure that is usable on its own in situations where there is only a
single source of updates, such as in data stream management systems.

In Chapter 6 we presented the design of our concurrent multiversion
B+-tree (CMVBT) index which uses a separate main-memory-resident
versioned B+-tree (VBT) index to store the pending updates created by
active transactions, and a TMVBT index for indexing the data items
inserted by committed transactions. Once an active transaction T has
committed, a system maintenance transaction is run to apply the updates
of T from the VBT index into the main TMVBT index. We say that a
version v is stable, if all the updates of the transaction T that created the
version v have been applied to the TMVBT index. The CMVBT index
is thus optimal when querying for the data items of stable versions, and
guarantees that the performance of the queries never degrades, even in the
presence of deletions. The separate VBT index is kept small by constantly
moving the updates of committed transactions into the TMVBT index.
The VBT can be kept entirely in main memory during general transaction
processing, and it does not incur any additional I/O operations.

Our CMVBT algorithms are designed to work in a multi-user environ-
ment with multiple concurrent updating transactions. We allow transac-
tions to roll back; either entirely, or up to a preset savepoint. Stan-
dard concurrency-control algorithms can be used to maintain logical data
consistency. The snapshot isolation algorithms [11] are especially well
suited for use with our multiversion index structure, and they guarantee
snapshot isolation for all transactions. Our algorithms are made recover-
able by the ARIES recovery algorithm [64, 66], and we apply structure-
modification operations on a level-by-level basis, performing each SMO as
an atomic action that transforms a balanced index into another balanced
index [39–41].

Because the commit-time version of a data item is not known when
the transaction that created it is active, the data-item updates must ini-
tially be tagged with transaction identifiers, which are later changed to
commit-time versions. The CMVBT index organization allows the data-
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item versions to be efficiently changed from transaction identifiers into
commit-time versions when the maintenance transaction moves the up-
dates from the VBT into the TMVBT index. This is a non-trivial issue
that often requires special book-keeping arrangements in other multiver-
sion index structures that support commit-time versioning.

We have experimentally analyzed the performance of the CMVBT in-
dex in Chapter 7 and compared it to the performance of the TSB-tree.
The results we obtained from our experiments agree with what we ex-
pected from our analytical results. The CMVBT index structure performs
on par with the TSB-tree index in standard transaction processing, but
is more efficient for key-range queries. The efficiency of the key-range
queries is especially apparent if the history of the database contains dele-
tions. We have furthermore compared the combined CMVBT index to
the TMVBT, and conclude that the separate VBT index does not af-
fect the overall performance significantly. For completeness, we have also
demonstrated that the performance of range queries degrades rapidly if
the multiversion data items are indexed by a single-version B+-tree index.

There is a downside to the optimal performance of the TMVBT index;
namely, that the index structure requires more space than the TSB-tree.
While the asymptotic space complexity of all the compared index struc-
tures is the same, the size of the TMVBT (in itself, and as part of the
CMVBT index) was 10 % to 60 % greater than the size of the TSB-tree
in our tests, depending on the TSB-tree splitting policy and on the num-
ber of deletions in the database history. Our conclusion is thus that the
CMVBT structure is a good choice for a general-purpose multiversion in-
dex when performance is more important than storage space, especially so
when it is expected that the history will also contain key deletions. The
TSB-tree is a better choice when storage space is limited, particularly if
historical data is to be stored on a tertiary storage, because the TSB-tree
allows historical pages to be moved during time-splits.
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APPENDIX A

Test Results for Uniform Data Set

The numerical results obtained from the test sets generated with a uni-
form random distribution are listed in this appendix. The names of the
multiversion index structures are explained in Table A.1.

Name Explanation

CMVBT Concurrent multiversion B+-tree (Chapter 6)
CMVBT-i Concurrent multiversion B+-tree, with the maintenance

transaction run after each ith transaction has committed
(Section 7.1)

TMVBT Transactional multiversion B+-tree (Chapter 5)
TSB-D TSB-tree with the deferred split policy (Sections 4.2

and 7.1)
TSB-W TSB-tree with the WOB-tree split policy (Sections 4.2

and 7.1)
TSB-I TSB-tree with the isolated-key-split policy (Sections 4.2

and 7.1)
MV-VBT Versioned B+-tree used as a multiversion index (Sec-

tion 3.2)

Table A.1. Names of the database index structures.
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APPENDIX A TEST RESULTS FOR UNIFORM DATA SET

0 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.00 1.02 0.00 6.3
CMVBT-5 3.00 1.02 0.00 4.9
CMVBT-10 3.00 1.02 0.00 5.0
CMVBT-50 3.00 1.02 0.00 5.1
TMVBT 3.00 0.98 0.00 5.5
TSB-D 4.20 1.16 0.00 7.3
TSB-W 4.20 1.17 0.00 6.9
TSB-I 4.20 1.19 0.00 8.1
MV-VBT 3.00 0.99 0.00 3.5

50 % updates Fixes Reads Writes Time(s)

CMVBT-1 4.58 1.03 0.59 9.6
CMVBT-5 4.92 1.03 0.53 9.5
CMVBT-10 5.04 1.02 0.51 6.7
CMVBT-50 5.16 1.03 0.49 7.2
TMVBT 3.71 0.99 0.48 10.0
TSB-D 4.30 1.18 0.49 11.3
TSB-W 4.50 1.17 0.49 11.2
TSB-I 4.50 1.20 0.49 10.7
MV-VBT 3.10 0.99 0.48 3.9

100 % updates Fixes Reads Writes Time(s)

CMVBT-1 6.17 1.03 1.18 13.4
CMVBT-5 5.53 1.03 1.02 12.8
CMVBT-10 5.45 1.03 1.00 12.7
CMVBT-50 5.38 1.03 0.98 14.6
TMVBT 4.42 0.99 0.96 12.8
TSB-D 4.41 1.18 0.98 14.9
TSB-W 4.80 1.18 0.98 15.1
TSB-I 4.80 1.20 0.97 14.7
MV-VBT 3.20 0.99 0.97 4.4

Table A.2. Queries and updates, initial state, five actions/transaction.
The table shows the average buffer fixes, page reads and page writes (per
action), and the elapsed real time (for the entire test).
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APPENDIX A TEST RESULTS FOR UNIFORM DATA SET

0 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.00 1.02 0.00 5.5
CMVBT-5 3.00 1.02 0.00 4.9
CMVBT-10 3.00 1.02 0.00 4.8
CMVBT-50 3.00 1.02 0.00 5.1
TMVBT 3.00 0.98 0.00 5.2
TSB-D 4.01 1.16 0.00 8.2
TSB-W 4.01 1.17 0.00 7.5
TSB-I 4.01 1.19 0.00 8.0
MV-VBT 3.00 0.99 0.00 3.3

50 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.24 1.03 0.49 6.3
CMVBT-5 3.81 1.03 0.49 9.4
CMVBT-10 4.34 1.02 0.48 9.6
CMVBT-50 6.32 1.02 0.48 8.7
TMVBT 3.52 0.99 0.48 10.1
TSB-D 4.02 1.17 0.48 13.3
TSB-W 4.03 1.17 0.48 12.1
TSB-I 4.03 1.19 0.48 10.6
MV-VBT 3.01 0.99 0.48 3.7

100 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.48 1.01 0.98 7.2
CMVBT-5 3.82 1.01 0.98 7.2
CMVBT-10 4.18 1.01 0.98 11.4
CMVBT-50 4.71 1.01 0.97 14.1
TMVBT 4.04 0.99 0.96 13.1
TSB-D 4.03 1.17 0.97 16.2
TSB-W 4.05 1.18 0.98 15.6
TSB-I 4.04 1.20 0.97 15.5
MV-VBT 3.01 0.99 0.97 4.3

Table A.3. Queries and updates, initial state, 100 actions/transaction.
The table shows the average buffer fixes, page reads and page writes (per
action), and the elapsed real time (for the entire test).
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APPENDIX A TEST RESULTS FOR UNIFORM DATA SET

0 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.00 1.04 0.00 4.9
CMVBT-5 3.00 1.04 0.00 4.6
CMVBT-10 3.00 1.04 0.00 4.7
CMVBT-50 3.00 1.04 0.00 4.7
TMVBT 3.00 0.99 0.00 4.8
TSB-D 4.20 1.25 0.00 6.7
TSB-W 4.20 1.22 0.00 6.2
TSB-I 4.20 1.28 0.00 6.4
MV-VBT 3.00 1.01 0.00 3.3

50 % updates Fixes Reads Writes Time(s)

CMVBT-1 4.25 1.05 0.42 7.3
CMVBT-5 4.59 1.05 0.36 8.0
CMVBT-10 4.70 1.05 0.34 7.6
CMVBT-50 4.82 1.05 0.33 8.1
TMVBT 3.37 1.00 0.31 6.7
TSB-D 4.30 1.26 0.32 9.3
TSB-W 4.49 1.23 0.32 9.4
TSB-I 4.49 1.29 0.32 9.3
MV-VBT 3.10 1.01 0.49 4.1

100 % updates Fixes Reads Writes Time(s)

CMVBT-1 5.48 1.05 0.85 6.8
CMVBT-5 4.84 1.05 0.69 7.1
CMVBT-10 4.76 1.05 0.67 7.0
CMVBT-50 4.70 1.05 0.65 10.5
TMVBT 3.73 1.00 0.64 6.7
TSB-D 4.40 1.25 0.64 13.6
TSB-W 4.78 1.23 0.65 13.2
TSB-I 4.78 1.29 0.64 12.6
MV-VBT 3.20 1.02 0.98 5.3

Table A.4. Queries and updates, 50 % deleted, five actions/transaction.
The table shows the average buffer fixes, page reads and page writes (per
action), and the elapsed real time (for the entire test).
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APPENDIX A TEST RESULTS FOR UNIFORM DATA SET

0 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.00 1.03 0.00 4.7
CMVBT-5 3.00 1.03 0.00 4.6
CMVBT-10 3.00 1.03 0.00 4.5
CMVBT-50 3.00 1.03 0.00 4.6
TMVBT 3.00 0.99 0.00 4.7
TSB-D 4.01 1.25 0.00 6.9
TSB-W 4.01 1.22 0.00 6.8
TSB-I 4.01 1.28 0.00 7.0
MV-VBT 3.00 1.01 0.00 3.3

50 % updates Fixes Reads Writes Time(s)

CMVBT-1 2.91 1.05 0.32 5.8
CMVBT-5 3.48 1.04 0.32 5.8
CMVBT-10 4.01 1.04 0.32 7.4
CMVBT-50 5.99 1.03 0.31 6.5
TMVBT 3.17 1.00 0.31 6.0
TSB-D 4.02 1.25 0.31 8.2
TSB-W 4.03 1.22 0.31 8.2
TSB-I 4.03 1.28 0.31 9.4
MV-VBT 3.01 1.02 0.49 4.2

100 % updates Fixes Reads Writes Time(s)

CMVBT-1 2.82 1.02 0.64 8.8
CMVBT-5 3.16 1.02 0.64 8.4
CMVBT-10 3.52 1.02 0.64 6.7
CMVBT-50 4.05 1.02 0.64 10.1
TMVBT 3.34 1.00 0.63 6.6
TSB-D 4.02 1.25 0.63 13.1
TSB-W 4.04 1.22 0.63 12.5
TSB-I 4.04 1.29 0.63 12.8
MV-VBT 3.02 1.02 0.98 4.5

Table A.5. Queries and updates, 50 % deleted, 100 actions/transaction.
The table shows the average buffer fixes, page reads and page writes (per
action), and the elapsed real time (for the entire test).
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APPENDIX A TEST RESULTS FOR UNIFORM DATA SET

del-0 Fixes Reads Writes Time(s)

CMVBT 240.27 236.69 0.00 44.8
TMVBT 242.47 237.46 0.00 46.0
TSB-D 244.76 239.75 0.94 121.5
TSB-W 295.93 291.69 0.96 119.8
TSB-I 286.19 281.90 0.95 128.7
MV-VBT 4072.29 4067.44 0.00 647.9

del-50 Fixes Reads Writes Time(s)

CMVBT 211.60 207.65 0.00 33.4
TMVBT 212.03 206.80 0.00 35.0
TSB-D 301.57 297.42 0.96 107.6
TSB-W 305.40 301.23 0.96 109.7
TSB-I 301.18 296.93 0.96 114.7
MV-VBT 5215.10 5212.04 0.00 762.7

del-100 Fixes Reads Writes Time(s)

CMVBT 0.00 0.00 0.00 0.0
TMVBT 0.00 0.00 0.00 0.0
TSB-D 305.37 301.18 0.96 77.9
TSB-W 306.03 301.86 0.96 77.1
TSB-I 302.60 298.35 0.96 70.3
MV-VBT 6617.91 6615.14 0.00 891.4

Table A.6. Current-version key-range queries. Range size is 5 % of the
entire key-space size. The table shows the average buffer fixes, page reads
and page writes (per action), and the elapsed real time (for the entire
test).
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APPENDIX B

Test Results for Gaussian Data Set

The numerical results obtained from the test sets generated with a Gaus-
sian random distribution are listed in this appendix. The names of the
multiversion index structures are explained in Table B.1.

Name Explanation

CMVBT Concurrent multiversion B+-tree (Chapter 6)
CMVBT-i Concurrent multiversion B+-tree, with the maintenance

transaction run after each ith transaction has committed
(Section 7.1)

TMVBT Transactional multiversion B+-tree (Chapter 5)
TSB-D TSB-tree with the deferred split policy (Sections 4.2

and 7.1)
TSB-W TSB-tree with the WOB-tree split policy (Sections 4.2

and 7.1)
TSB-I TSB-tree with the isolated-key-split policy (Sections 4.2

and 7.1)
MV-VBT Versioned B+-tree used as a multiversion index (Sec-

tion 3.2)

Table B.1. Names of the database index structures.
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APPENDIX B TEST RESULTS FOR GAUSSIAN DATA SET

0 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.00 0.58 0.00 6.4
CMVBT-5 3.00 0.58 0.00 4.4
CMVBT-10 3.00 0.58 0.00 4.8
CMVBT-50 3.00 0.58 0.00 4.5
TMVBT 3.00 0.56 0.00 4.8
TSB-D 4.20 0.66 0.00 6.1
TSB-W 4.20 0.70 0.00 5.7
TSB-I 3.20 0.66 0.00 6.4
MV-VBT 3.00 0.60 0.00 2.8

50 % updates Fixes Reads Writes Time(s)

CMVBT-1 4.43 0.59 0.40 7.5
CMVBT-5 4.80 0.59 0.34 6.0
CMVBT-10 4.88 0.59 0.32 7.2
CMVBT-50 4.90 0.59 0.30 7.2
TMVBT 3.71 0.56 0.29 8.0
TSB-D 4.30 0.66 0.29 6.8
TSB-W 4.44 0.69 0.30 7.5
TSB-I 3.44 0.66 0.30 7.4
MV-VBT 3.10 0.60 0.31 2.9

100 % updates Fixes Reads Writes Time(s)

CMVBT-1 5.85 0.61 0.76 9.2
CMVBT-5 5.21 0.61 0.60 9.2
CMVBT-10 5.13 0.61 0.58 8.9
CMVBT-50 5.07 0.61 0.57 10.2
TMVBT 4.42 0.58 0.54 9.5
TSB-D 4.41 0.68 0.55 10.3
TSB-W 4.67 0.71 0.57 10.6
TSB-I 3.67 0.68 0.56 7.2
MV-VBT 3.20 0.63 0.59 3.5

Table B.2. Queries and updates, initial state, five actions/transaction.
The table shows the average buffer fixes, page reads and page writes (per
action), and the elapsed real time (for the entire test).
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APPENDIX B TEST RESULTS FOR GAUSSIAN DATA SET

0 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.00 0.58 0.00 4.7
CMVBT-5 3.00 0.58 0.00 4.8
CMVBT-10 3.00 0.58 0.00 4.4
CMVBT-50 3.00 0.58 0.00 4.5
TMVBT 3.00 0.55 0.00 4.6
TSB-D 4.01 0.66 0.00 6.6
TSB-W 4.01 0.69 0.00 5.9
TSB-I 3.01 0.65 0.00 6.0
MV-VBT 3.00 0.60 0.00 2.6

50 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.02 0.60 0.31 5.2
CMVBT-5 3.58 0.60 0.31 5.3
CMVBT-10 3.97 0.60 0.30 5.7
CMVBT-50 5.96 0.59 0.28 6.5
TMVBT 3.52 0.57 0.29 6.0
TSB-D 4.02 0.67 0.30 8.0
TSB-W 4.02 0.70 0.30 7.8
TSB-I 3.02 0.66 0.30 6.8
MV-VBT 3.01 0.61 0.31 3.1

100 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.01 0.58 0.55 5.5
CMVBT-5 3.35 0.58 0.55 5.6
CMVBT-10 3.72 0.58 0.55 6.1
CMVBT-50 4.23 0.58 0.54 8.9
TMVBT 4.04 0.56 0.52 9.4
TSB-D 4.03 0.67 0.55 10.0
TSB-W 4.04 0.71 0.56 8.8
TSB-I 3.04 0.67 0.55 9.5
MV-VBT 3.01 0.62 0.58 3.5

Table B.3. Queries and updates, initial state, 100 actions/transaction.
The table shows the average buffer fixes, page reads and page writes (per
action), and the elapsed real time (for the entire test).
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APPENDIX B TEST RESULTS FOR GAUSSIAN DATA SET

0 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.00 0.58 0.00 4.2
CMVBT-5 3.00 0.58 0.00 3.9
CMVBT-10 3.00 0.58 0.00 4.0
CMVBT-50 3.00 0.58 0.00 3.9
TMVBT 3.00 0.55 0.00 4.5
TSB-D 4.20 0.71 0.00 5.2
TSB-W 4.20 0.72 0.00 5.1
TSB-I 4.20 0.70 0.00 5.7
MV-VBT 3.00 0.64 0.00 2.8

50 % updates Fixes Reads Writes Time(s)

CMVBT-1 4.15 0.58 0.29 5.6
CMVBT-5 4.52 0.58 0.23 5.6
CMVBT-10 4.61 0.58 0.21 5.6
CMVBT-50 4.63 0.58 0.20 6.0
TMVBT 3.44 0.55 0.19 4.6
TSB-D 4.30 0.70 0.20 6.4
TSB-W 4.44 0.71 0.20 6.7
TSB-I 4.44 0.69 0.20 6.7
MV-VBT 3.10 0.63 0.32 3.1

100 % updates Fixes Reads Writes Time(s)

CMVBT-1 5.34 0.59 0.57 7.5
CMVBT-5 4.70 0.59 0.41 7.6
CMVBT-10 4.62 0.59 0.39 6.3
CMVBT-50 4.56 0.59 0.38 8.6
TMVBT 3.91 0.56 0.36 7.3
TSB-D 4.40 0.71 0.39 8.8
TSB-W 4.67 0.72 0.39 8.9
TSB-I 4.67 0.71 0.39 7.1
MV-VBT 3.20 0.65 0.61 3.6

Table B.4. Queries and updates, 50 % deleted, five actions/transaction.
The table shows the average buffer fixes, page reads and page writes (per
action), and the elapsed real time (for the entire test).
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APPENDIX B TEST RESULTS FOR GAUSSIAN DATA SET

0 % updates Fixes Reads Writes Time(s)

CMVBT-1 3.00 0.58 0.00 3.8
CMVBT-5 3.00 0.58 0.00 4.0
CMVBT-10 3.00 0.58 0.00 3.9
CMVBT-50 3.00 0.58 0.00 3.9
TMVBT 3.00 0.55 0.00 4.0
TSB-D 4.01 0.70 0.00 5.5
TSB-W 4.01 0.71 0.00 5.7
TSB-I 4.01 0.69 0.00 5.7
MV-VBT 3.00 0.63 0.00 2.7

50 % updates Fixes Reads Writes Time(s)

CMVBT-1 2.75 0.59 0.20 5.0
CMVBT-5 3.31 0.59 0.20 5.3
CMVBT-10 3.69 0.59 0.20 4.7
CMVBT-50 5.68 0.58 0.18 5.5
TMVBT 3.25 0.55 0.19 5.4
TSB-D 4.02 0.70 0.20 6.5
TSB-W 4.02 0.72 0.21 7.2
TSB-I 4.02 0.70 0.20 6.6
MV-VBT 3.01 0.64 0.32 3.2

100 % updates Fixes Reads Writes Time(s)

CMVBT-1 2.49 0.58 0.37 4.8
CMVBT-5 2.83 0.58 0.36 5.5
CMVBT-10 3.20 0.58 0.36 4.5
CMVBT-50 3.70 0.58 0.36 8.4
TMVBT 3.52 0.55 0.34 6.2
TSB-D 4.02 0.71 0.38 8.9
TSB-W 4.03 0.72 0.38 9.0
TSB-I 4.04 0.70 0.38 8.7
MV-VBT 3.01 0.65 0.60 4.3

Table B.5. Queries and updates, 50 % deleted, 100 actions/transaction.
The table shows the average buffer fixes, page reads and page writes (per
action), and the elapsed real time (for the entire test).
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APPENDIX B TEST RESULTS FOR GAUSSIAN DATA SET

del-0 Fixes Reads Writes Time(s)

CMVBT 260.50 257.25 0.00 86.5
TMVBT 259.02 254.84 0.00 82.9
TSB-D 258.12 253.17 0.37 168.2
TSB-W 314.65 310.20 0.39 168.6
TSB-I 299.05 294.96 0.38 177.0
MV-VBT 4360.49 4352.57 0.00 687.4

del-50 Fixes Reads Writes Time(s)

CMVBT 229.11 225.50 0.00 44.1
TMVBT 230.38 225.50 0.00 44.3
TSB-D 325.61 321.18 0.39 133.5
TSB-W 326.12 321.90 0.39 134.7
TSB-I 320.28 315.92 0.40 136.7
MV-VBT 5399.19 5391.06 0.00 800.0

del-100 Fixes Reads Writes Time(s)

CMVBT 0.00 0.00 0.00 0.0
TMVBT 0.00 0.00 0.00 0.0
TSB-D 329.29 324.86 0.39 88.6
TSB-W 326.49 322.26 0.39 83.9
TSB-I 322.05 317.85 0.40 80.9
MV-VBT 7029.21 7021.64 0.00 912.9

Table B.6. Current-version key-range queries. Range size is 5 % of the
entire key-space size. The table shows the average buffer fixes, page reads
and page writes (per action), and the elapsed real time (for the entire
test).
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