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ABSTRACT
In modern database applications access to historical versions
of the dataset is becoming increasingly important. Several
multiversion structures with corresponding concurrency-con-
trol and recovery algorithms exist, but none of these have
optimal logarithmic execution times for all actions in all sit-
uations. The time-split B+-tree by Lomet et al. (TSBT) is
used in the Immortal DB database prototype, but it does
not consolidate pages. The multiversion B+-tree by Becker
et al. (MVBT) is an asymptotically optimal multiversion
structure that guarantees logarithmic execution times for
all actions, but it lacks concurrency-control algorithms.

It is our plan to design and implement several multiversion
index structures with full concurrency-control and ARIES-
based recovery algorithms and evaluate their performance.
We will experiment with using a multiversion B+-tree as a
historical storage, to which the updates of committed trans-
actions are moved one at a time from a separate B+-tree.
We will also consider using an optimized R-tree to store
the multiversion data as two-dimensional line segments. To
evaluate these solutions, we will also implement a straight-
forward B+-tree based solution that stores the different ver-
sions of a data item consecutively; and a solution based on
the existing time-split B+-tree. We expect that the solution
that uses a multiversion B+-tree will be the most efficient.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design—access
methods,recovery and restart ; H.2.4 [Database Manage-
ment]: Systems—concurrency,transaction processing
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1. INTRODUCTION
Traditional database systems maintain a single version of

the stored data. In many applications, access to historical
data is becoming increasingly important. Such applications
are, for example, medical-record, legal-record and moving-
object databases; scheduling applications and inventory con-
trol, engineering design and statistical applications [17, 24,
2, 26]. Storing such multiversion data requires a special
database structure to maintain good query-time and space
constraints. Fortunately, there are a number of database
structures designed for storing multiversion data. However,
concurrency-control and recovery algorithms for these struc-
tures have not been comprehensively addressed.

In database research, the standard structure that is used
as the basis of virtually all databases is the B+-tree [1,
6]. The standard B+-tree, however, is used to store only
a single version of data items. A straightforward exten-
sion to multiversion data that uses a B+-tree for storing
the different versions of the data items consecutively may
be efficient enough for exact-match queries. Concurrency-
control and recovery algorithms for simple structures such
as these are also straightforward to design. Standard mul-
tiversion concurrency-control algorithms, such as snapshot
isolation [4, 7] can be easily applied. However, structures
such as these are not adequate for range queries, as con-
secutive entries of a given version may need to be searched
separately.

A better approach to storing multiversion data is to use R-
trees [8, 3] as the data storage. After all, multiversion data
can be seen as two-dimensional data with keys as the first di-
mension and version ranges as the second dimension. R-trees
do not, in itself, guarantee logarithmic access times in all sit-
uations. The standard R-tree in fact requires traversing of
multiple paths even when doing an exact-match query, as
the key-area regions of sibling pages may overlap. However,
when discussing multiversion data, it is worth noticing that



the key-version ranges of data items stored in a multiver-
sion database cannot overlap. This means that the overlap
in index pages may be reduced when storing multiversion
data.

Another structure, the multiversion B+-tree (MVBT) by
Becker et al. [2] is an asymptotically optimal multiversion
structure that guarantees logarithmic execution times for
all actions and structure-modification operations in any se-
quences of user actions. Unfortunately, no comprehensive
concurrency-control algorithms exist for the MVBT. An-
other efficient multiversion database, the Immortal DB pro-
totype database by Lomet et al. [15, 16], is based on the
time-split B+-tree (TSBT) [17, 18]. Although Immortal DB
provides comprehensive concurrency-control and recovery
algorithms, the underlying TSBT structure is not optimal in
all situations. Furthermore, the TSBT does not consolidate
pages. This means that current-version space consumption
cannot be reduced once it has reached a certain size.

It is our intention to design a multiversion index struc-
ture that (1) is optimal in the sense that all actions (on
any version) should work in logarithmic time in all situa-
tions; and (2) can be used in the fully concurrent scenario
with multiple read-only and updating transactions. In con-
trast to the original MVBT, physical deletion is required for
rolling back aborted transactions that need to delete the en-
tries inserted in their forward-rolling phase. On the other
hand, the structure must also be able to merge pages to
reduce current-version space consumption if enough entries
are deleted from the database. Finally, we will also design
concurrency-control and recovery algorithms that are based
on the de facto standard ARIES [21] algorithms.

We have recently written a manuscript on managing multi-
action transactions and concurrency control and recovery in
the multiversion B+-tree [9]. Our paper provides concur-
rency-control and recovery algorithms for a scenario where a
single updating transaction can run concurrently with mul-
tiple read-only transactions. We call the extended struc-
ture the transactional multiversion B+-tree (TMVBT). The
TMVBT is highly concurrent for the scenario it allows: no
locking is required; the single updating transaction write-
latches at most five pages at a time (one parent and four sib-
ling pages); and the read-only transactions read-latch only
one page at a time (no lock-coupling required). The next
step in our research is to design a multiversion structure
with concurrency-control and recovery algorithms that can
handle multiple concurrent updating and read-only trans-
actions. The planned algorithms will use a separate B+-
tree to temporarily store the updates of active transactions.
A maintenance transaction will be run frequently to move
the committed updates from the separate B+-tree into the
TMVBT, thus keeping the B+-tree size small.

To support the analysis of the designed multiversion al-
gorithms, we will develop analytical performance results for
the structures and validate them by implementing the de-
signed algorithms for the straightforward B+-tree system,
for the combined TMVBT and B+-tree system, for the R-
tree system, and for the time-split B+-tree system. The
versioned B+-tree and the time-split B+-tree will work as
comparison points when evaluating the performance of the
other design ideas. We will then simulate a set of transac-
tions on the structures, and measure the amount of required
I/O operations, the number of locks and latches acquired
and the space consumption for each structure.

The contributions of our planned research are: (1) we will
design a fully concurrent multiversion database solution that
uses our extended TMVBT as a storage for committed trans-
actions alongside with a separate B+-tree; (2) our aim is to
optimize the existing R-tree concurrency-control algorithms
for storing multiversion data; (3) we will acquire analytical
results for the designed solutions; and (4) we will evaluate
the designed solutions against existing database structures.

This paper is organized as follows. In Sec. 2, we begin
by defining the multiversion database theory applied in this
paper. In Sec. 3, we present the straightforward solution
that uses a standard B+-tree for storing multiversion data.
This structure is intended to be used as a comparison point
when evaluating the performance of the other structures.
Next, in Sec. 4, we describe the idea of using an R-tree
as a multiversion storage structure. After that, in Sec. 5
we introduce the transactional multiversion B+-tree, and in
Sec. 6, we outline our suggestion of using the combination of
a TMVBT and a separate B+-tree for building an efficient
multiversion database structure. Sec. 7 describes the time-
split B+-tree that we are going to use as another comparison
point. In Sec. 8, we describe how we are going to evaluate the
different structures. Next, in Sec. 9, we describe our future
research plans. Finally, in Sec. 10, we give our preliminary
conclusions on the presented design ideas.

2. MULTIVERSION DATABASES
While a standard data item in a single-version database is

a pair (k, w), where k is the data key and w the stored data, a
multiversion data item also includes a version range [v1, v2)
for which it is alive. For each key there can be only one data
item alive at any version. A data item with an unbounded
version range is said to be alive at the current version of the
database; or just simply alive. A data item with a bounded
version range [v1, v2) is said to be alive at version v for all
versions v1 ≤ v < v2. The version range of a data item
begins when the item is inserted into the database and ends
when the item is deleted from the database. Updates do not
need to be explicitly defined; rather an update at version v
will be modeled by ending the version range of the data item
to version v and creating a new data item whose version
range begins with version v. Because there are multiple
ways to represent the version ranges of data items, we will
not go into implementation details.

A fully concurrent multiversion database allows any num-
ber of read-only and updating transactions to operate con-
currently. The read-only transactions must explicitly specify
which version they want to read; however, they are only al-
lowed to read versions that were already committed when
the read-only transaction began. A global counter vcur is
used to track the version number of the latest committed
transaction. The updating transactions, on the other hand,
must always operate on the most recent version.

A read-only transaction may thus contain the following
actions:

• begin-read-only: begins a new read-only transac-
tion. This action records the latest committed version
of the database vbegin ← vcur .

• query(key k, version v): retrieves from the database
a data item (k, w) that is alive at version v ≤ vbegin , if
such an item exists.



• range-query(range [k1, k2), version v): retrieves
the set of data items (k, w) that are alive at version v ≤
vbegin with k1 ≤ k < k2.

• commit-read-only: commits the read-only transac-
tion.

An updating transaction does not specify any version num-
ber in its actions. A multiversion concurrency-control algo-
rithm must be applied to maintain a serializable view of
the most recent version of the database for each updating
transaction. Depending on the timestamping methodology
used, it may be possible that the commit-time timestamp
of updating transactions is not known during their execu-
tion. In such a scenario, temporary or dummy timestamps
can be used during the execution of the updating transac-
tions. These temporary timestamps can be based, for exam-
ple, on the start-time timestamps of the transactions. The
temporary timestamps need to be changed to the commit-
time timestamp of the transaction at some point after the
transaction has committed. This technique is called lazy
timestamping [28, 16].

An updating transaction may thus contain the following
actions:

• begin-update: begins a new updating transaction.

• query(key k): retrieves the live data item (k, w), if
such an item exists.

• range-query(range [k1, k2)): retrieves the set of live
data items (k, w) with k1 ≤ k < k2.

• insert(key k, data w): a forward-rolling action that
is legal when the database does not contain a live data
item (k, w′); this action inserts a data item (k, w) into
the database with version range [v,∞). The version v
is the commit-time timestamp of the updating trans-
action, or a temporary timestamp.

• delete(key k): a forward-rolling action that is legal
when the database contains a live data item (k, w).
This action deletes the data item from the database
by setting the end version of the item to version v.
The version v is the commit-time timestamp of the
updating transaction, or a temporary timestamp.

• commit-update: commits the updating transaction.

• abort: labels the updating transaction as aborted and
starts the backward-rolling phase.

• undo-insert(log record r): a backward-rolling ac-
tion that undoes the insert action logged with the log
record r.

• undo-delete(log record r): a backward-rolling ac-
tion that undoes the delete action logged with the log
record r.

• finish-rollback: finishes the backward-rolling phase
of an aborted updating transaction.

3. VERSIONED B+-TREE
A straightforward solution for storing multiversion data is

to store the data in a B+-tree which has been extended to
store the version information. An advantage of this solution
is that tried and tested algorithms for concurrency control,
recovery and tree-structure maintenance exist. We call this
solution a versioned B+-tree. This straightforward solution
stores tuples of the form (k, [v1, v2), w). Because each key k
is unique for any given version v, the version ranges of all
the data items with key k cannot overlap. When inserting a
data item, the end version v2 is initially v2 = ∞. Deleting
a data item at version v is performed logically by replacing
the tuple (k, [v1,∞), w) with (k, [v1, v), w), v > v1. In this
structure, the B+-tree algorithms are modified to use the
combination of k and v1 to order the data items in such a way
that (k, v1) < (k′, v′1) if (k < k′) ∨ (k = k′ ∧ v1 < v′1). The
situation k = k′ ∧ v1 = v′1 is not possible, because version-
ranges of data items with the same key cannot overlap.

Search validity for the versioned B+-tree is guaranteed by
using the latch-coupling protocol [20, 19] when traversing
the tree. The logical state of the database as seen by dif-
ferent transactions is maintained with snapshot isolation [4,
7]. All operations are logged using an ARIES-based write-
ahead logging protocol. Structure-modification operations
are executed as separate atomic actions that transform a
structurally consistent tree into another structurally consis-
tent tree. The structure-modification operations are exe-
cuted top-down to maintain the tree consistency between
each operation.

The problem with this solution is that the search times
may grow far too large, especially for range queries. For
(single item) queries, inserts and deletes, the search time is
logarithmic in the amount of entries in the B+-tree. The the-
oretical maximum amount of entries in a versioned B+-tree
at version v is O(nv), where n is the largest amount of en-
tries a transaction has updated. Thus the worst case search
time for the single-data-item queries is O(log nv). However,
in contrast to the standard B+-tree, range queries cannot
benefit from the located leaf-page of the previous keys, as
the data items of the next key may be far away from the
previous key. Thus, in the worst case, the performance of
the range query may even deteriorate to O(k log nv), where
k = k2 − k1 is the size of the searched key range (separate
tree traversals for each key).

4. TWO-DIMENSIONAL R-TREE
Another design idea is to use a standard R-tree as a stor-

age for multiversion data, with data keys and version ranges
used as the dimensions. A data entry with key k and version
range [v1, v2) therefore occupies a one-dimensional line seg-
ment ([k, k], [v1, v2)) of the key-version space. An important
property of the keys stored in the database is that the key-
version ranges of different data items cannot overlap. This
may allow us to optimize the R-tree algorithms by reducing
the overlapping of index pages.

Using R-trees to store multiversion data has been dis-
cussed, for example, by Kolovson and Stonebraker [11]. In
their paper, they present two design ideas that periodically
move historical entries from the current-version R-tree into
a historical R-tree that is possibly stored in a write-once
medium. However, their paper does not discuss concurrency
control and recovery. Concurrency control and recovery for



Figure 1: An example of a transactional MVBT.

R-trees has been discussed in [23, 5, 12, 13, 27]. The ap-
proaches to R-tree concurrency control in these articles can
be divided into two main techniques: lock-coupling-based
algorithms [23, 5] and link-based algorithms [12, 13, 27].

The R-tree lock-coupling-based concurrency-control algo-
rithms are based on a concept that is similar to the standard
latch-coupling method used in B+-trees. Because the chil-
dren of an R-tree index page may overlap, the search may
need to go through multiple subtrees to find the proper leaf
page. Thus all the parent pages in the search path need to
be kept locked until all their children have been examined.
To obtain a better level of concurrency, the search is per-
formed level-by-level using breadth-first search (instead of
depth-first search) to keep the parents locked for as short
a time as possible. Recovery in R-trees has been described
by Chen and Huang [5]; they report that they use a recov-
ery strategy that is based on the write-ahead-logging (WAL)
protocol. The problem with the lock-coupling-based concur-
rency control is that entire subtrees are held locked while the
search is still going on.

The link-based concurrency-control schemes, on the other
hand, are based on an idea similar to concurrency-control
schemes in B-link-trees [14]. The original B-link-tree con-
currency-control schemes allow for high concurrency because
searchers do not need to keep multiple pages locked simulta-
neously. Rather, searchers notice split pages from changed
key ranges and traverse right links to find the keys that were
moved away from the split page. However, in R-trees, the
(n-dimensional) keys cannot be similarly ordered and thus
the link-based R-tree algorithms use a logical sequence num-
ber [12], or node sequence number [13, 27] based method to
determine whether a child page has been changed after the
parent page was released. The problem with this approach
(as with the B-link-tree approach) is that empty-page dele-
tion can only be performed when there are no searchers that
could have stored links to these pages. Empty-page deletion
is dealt with either by using signaling locks [13] or by mark-
ing the pages with a generation counter [12], but the extra
effort required makes the link-based algorithms more com-
plicated than the lock-coupling algorithms.

For concurrency control, Kornacker et al. [13] propose a
hybrid locking mechanism which uses two-phase locking for
existing entries and applies predicate locking at page level to
avoid phantom insertions. The searchers attach the search
predicate to all the pages they traverse. An insert operation
thus needs to only check the predicates at the leaf page.

However, predicate locking is very expensive compared to
page locking, because all the predicates must be checked.
Recovery of the link-based algorithms is based on write-
ahead logging and separating the update operations into
content-changing operations (insert, delete) and structure-
modification operations (page split, page delete) [12, 13, 27].
The structure-modification operations are logged as separate
atomic actions that transform a structurally consistent tree
into another structurally consistent tree.

The current R-tree concurrency-control and recovery al-
gorithms have many drawbacks. The lock-coupling-based
algorithms are straightforward enough, but they may keep
a large portion of the R-tree locked, thus reducing concur-
rency. The link-based algorithms seem to offer more con-
currency, but physical record deletion, empty-page deletion
and phantom avoidance are still very complicated. Our plan
is to design ARIES-based concurrency-control and recovery
algorithms for a standard R-tree structure that is used as
a multiversion data storage. We hope to design straightfor-
ward and elegant algorithms that take into account the fact
that the stored data is line segments instead of rectangles.

5. TRANSACTIONAL MVBT
The transactional multiversion B+-tree (TMVBT) [9] is

our extension to the asymptotically optimal multiversion
B+-tree (MVBT) by Becker et al. [2]. The multiversion B+-
tree stores tuples of the form (k, [v1, v2), w), where w is ei-
ther the data item (or pointer; in leaf pages), or a child page
pointer (in index pages). The pages of a given level of the
MVBT cover disjoint rectangular regions of the key-version
space. The basic operation in the MVBT is the version-split
operation, which splits a page at the latest version. Page
data entries (data items or child page pointers) whose ver-
sion range extends over the split version are duplicated in
the two pages. Thus, if an index page splits, the child page
pointers are duplicated and the child pages will have mul-
tiple parents. Key splits and page merges in the original
MVBT are possible only directly after a version split.

While the original MVBT by Becker et al. [2] assumes a
single-update transaction model, in which the database ver-
sion number must change between each update, our trans-
actional MVBT allows transactions to contain multiple up-
dates. Key splits and page merges are also allowed with-
out version splits for pages that have been created earlier
by the same transaction. We have also designed a sim-
ple concurrency-control scheme that allows a single updat-



ing transaction to run concurrently with multiple read-only
transactions. Our concurrency-control and recovery algo-
rithms apply write-ahead logging and assume the standard
steal-and-no-force buffering policy. The extended algorithms
also allow the active transaction to physically roll back,
leaving no trace of the intermediate updates performed on
the structure. Recovery for the structure is maintained by
ARIES-based logging of the actions and structure-modifi-
cation operations. Each structure-modification operation is
executed as a separate atomic action that is logged with
a single redo-only log record [10] that transforms a struc-
turally consistent TMVBT into another structurally consis-
tent TMVBT. The user actions are logged with physiological
redo-undo log records.

Our algorithms retain all the asymptotically optimal time-
complexity guarantees of the original MVBT algorithms.
The original structure (and thus also the TMVBT) guar-
antees access times that are logarithmic in the number of
entries of any given version, for all versions. More specifi-
cally, the running times for all actions (query, range query,
insert and delete) for any version v have an execution time
of O(log mv), where mv is the amount of entries of version v
in the database. In a standard B+-tree, the logarithmic base
is usually B/2, where B is the page capacity. In the MVBT,
the logarithmic base is around B/5.

An example of a structurally consistent transactional mul-
tiversion B+-tree is given in Fig. 1. The white pages in the
image are live pages, and the dark ones are dead. The ex-
ample has been generated by our visualization software with
the following action sequence:

• Transaction 1: insert data items with keys 10, 5, 7, 15,
123, 3, 4, 18, 24, 25, 30, 67, and 100.

• Transaction 2: delete data items with keys 100, 25, 30,
67, 123, and 10.

• Transaction 3: insert data items with keys 31, 44, 47,
49, 50, 52–58, 34, 36, 35, and 37.

We believe that it is not possible to further extend the
transactional multiversion B+-tree to support full concur-
rency without losing some of the structure’s logarithmic
guarantees. If multiple concurrent active transactions are
allowed to insert different versions of entries to pages, this
may even lead to a situation where it is impossible to split
the page.

6. TMVBT WITH VERSIONED B+-TREE
As the transactional MVBT only allows a single updating

transaction to run at a time, we propose a setting in which
the TMVBT is used as a storage for committed historical
transactions. In this setting, a small separate versioned B+-
tree is used to store the updates of active transactions. The
updates of committed transactions can then be moved from
the versioned B+-tree into the transactional MVBT by a
periodically-run maintenance transaction in commit order.
This does compromise on the logarithmic execution-time-
guarantees of tree traversal for the active transactions. How-
ever, as it is assumed that the number of active transactions
is not too large, the versioned B+-tree will stay small, and
the asymptotically worse access times of the B+-tree will not
affect the overall performance of the structure significantly.
For bulk updates, it may be more efficient to apply them di-
rectly to the TMVBT, without going through the versioned

B+-tree. This can be done off-line, or by blocking access for
updating transactions for the duration of the bulk update.

The basic idea of this setting is that there is a historical
version counter vhis that determines which transaction up-
dates have been moved to the transactional MVBT. The
updates of all transactions with version number v ≤ vhis are
fully stored in the TMVBT. Read-only transactions that
wish to read a version v from the database operate by the
following rules: (1) if v ≤ vhis , the transaction can directly
fetch the data item from the TMVBT; and (2) if v > vhis , the
transaction may need to check both the versioned B+-tree
and the TMVBT to retrieve the correct version of the data
item. In the latter case, the read-only transaction must first
search the versioned B+-tree to see if an update has been
made to the data item by a committed but not-yet-moved
transaction with timestamp vt ≤ v. If no update entry was
found, the transaction must read the most recent histori-
cal version from the TMVBT. Updating transactions must
similarly go through both the versioned B+-tree and the
TMVBT to search for the latest version of the data item.
Range queries always need to search through both structures
at the same time. When progressing to the next key, both of
the structures need to be searched to determine the smallest
next key. The standard saved path concept can be used to
reduce the amount of I/O operations required. However, be-
cause there are two separate structures, the transaction pro-
cesses or threads need to maintain two saved path variables;
one for the TMVBT and one for the versioned B+-tree.

The logical state of the latest versions is maintained by
using a standard multiversion concurrency-control proto-
col, such as snapshot isolation [4, 7]. A major benefit in
this setting is that it is very easy to apply lazy timestamp-
ing [28, 16]. The updating transactions can use tempo-
rary timestamps, which are stored on the versioned B+-
tree. A mapping from temporary timestamps to commit-
time timestamps is maintained in a simple structure called
the transaction-timestamp table, or TTT. There is no need
to revisit the entries in the versioned B+-tree when the trans-
action first commits. Instead, when the maintenance trans-
action moves the updates of a committed transaction from
the versioned B+-tree into the TMVBT, it can change the
temporary timestamps of the updates into the commit-time
timestamps. When the updates of the transaction have been
moved, the mapping for this transaction is removed from the
TTT.

When the maintenance transaction is run, another counter
vmov is set to vmov ← vhis +1. This indicates that the main-
tenance transaction is in progress and is copying updates of
the committed transaction with version v = vmov from the
B+-tree into the TMVBT. During this phase, the active
transactions may read versions v < vmov from the TMVBT,
and transactions with version v ≥ vmov from the versioned
B+-tree. Note that this definition does not conflict with
the earlier definition of the usage of the historical counter
vhis . After the entries have been copied, the history version
counter vhis is incremented to vhis ← vmov . At this point,
transactions can read the committed version vmov from the
TMVBT. The next step in the maintenance transaction is
to remove the copied updates of the transaction with version
v = vmov from the versioned B+-tree. After the deletion is
complete, the maintenance transaction commits.

Recovery in this database organization is a combination of
the recovery algorithms of the versioned B+-tree (see Sec. 3)



and transactional MVBT (see Sec. 5). The actions of main-
tenance transactions (i.e., all the actions performed on the
TMVBT) can be logged with redo-only log records, as all
the data required for completing the maintenance transac-
tion are always available. This means, however, that the
standard ARIES-based recovery algorithms would need to
be modified. Another approach is to simply log the actions
with standard redo-undo log records and roll back the main-
tenance transaction if a system crash occurs.

An unsolved issue in the moved-transaction-version pro-
cessing still remains. When the maintenance transaction has
copied the updates of a transaction T with version v = vmov ,
the active transactions need to be somehow notified that the
correct place to search for version vmov is now the TMVBT.
It would be infeasible for the active transactions to check
the version counter vhis (which has now been set to vmov )
between each single operation. One possible solution could
be to track the count of active transactions that have read
vhis and are using the information to read the structures.
When the system maintenance transaction has copied the
entries, it would then wait until the count of transactions
that are using the old version number reaches zero.

The idea of using a separate B+-tree for storing the up-
dates of active transactions is closely related to the idea of
using differential indices [25] or a side file [22]. The differen-
tial indices are used to group together the updates of several
transactions in order to insert them more efficiently into the
main index. The side file is used to store the updates of
ongoing transactions for the duration of an index-building
operation. A crucial difference is that due to the properties
of the TMVBT, we have to move the updates of transactions
one transaction at a time in order to maintain the logarith-
mic query-time bounds of the TMVBT tree-traversal for all
versions. However, we can still benefit from the fact that
records with consecutive keys updated by the same transac-
tion will be moved to the TMVBT in ascending order. The
maintenance transaction can therefore speed up the copying
process by keeping track of the traversed path via the saved
path variable. In the optimal situation, many consecutive
updates will thus be applied directly to the same page.

7. TIME-SPLIT B+-TREE
The time-split B+-tree (TSBT) by Lomet et al. [17, 18,

15, 16] is a multiversion structure that stores the multiver-
sion data in a way similar to the multiversion B+-tree. The
structure does not impose strict restrictions on the number
of live data items for each version. Thus, both time and
key splits are always possible for any page. Another ben-
efit of the time-split B+-tree is that the historical data is
moved when a time-split is triggered. That is, when page
p is split, the old data is moved to a new page p′, and p
continues to be the storage for current data. In contrast,
in the multiversion B+-tree, the old data stays in the split
page p, and transactions use the new page p′ for further op-
erations. Moving the old page is possible as only historical
pages may have multiple parents, and thus the single parent
can be updated. This allows historical data to be migrated
to a slower, possibly write-once storage medium.

There are, however, some drawbacks in the TSBT. For
example, the page splitting algorithms do not guarantee that
the pages contain any specific amount of entries alive at
any given version. Furthermore, the pages of a TSBT are
never merged or deleted. Thus, the tree-traversal time for

the current version of the database cannot decrease, even
if all the entries are deleted from the database. For these
reasons, we believe that the multiversion B+-tree can be
more efficient for a range of applications.

However, because the structure does not impose entry-
count restrictions for different versions, the concurrency-
control and recovery algorithms are simpler. It is sufficient
to use a standard multiversion concurrency-control proto-
col (such as snapshot isolation), and to apply the updates
directly to the TSBT. If a transaction rolls back, an in-
serted entry can be physically removed from the TSBT, and
a deleted entry can be reinserted to the page. This is not
possible in the MVBT in all situations, as the physical dele-
tion may reduce the number of live entries in a certain page
below acceptable limits.

8. EVALUATION OF RESULTS
We will evaluate our concurrent and recoverable algo-

rithms by comparing them to existing alternative algorithms.
We will first develop analytical results for the suggested de-
sign ideas, and then validate the obtained results by simula-
tion. The original multiversion B+-tree, for example, guar-
antees that at least a configurable number of user actions
must be performed before a structure-modification opera-
tions is required. Our extended algorithms maintain these
guarantees. We can thus calculate the maximum amount
of operations required for a given set of user actions in a
multiversion B+-tree of a given height. From this it is also
possible to determine the maximum growth of the MVBT
for a given set of actions. We can also calculate these values
for the other structures. For tree traversals, the multiver-
sion B+-tree guarantees access times that are logarithmic in
the number of live entries for the queried version. None of
the other structures can guarantee this for all versions.

We will also design and implement a simulator to simu-
late the different multiversion structures and concurrency-
control and recovery algorithms to validate the obtained an-
alytical results. We will generate sets of random data that
will be inserted, deleted and read from the database struc-
tures concurrently. To determine the effects of different key
distributions, we will generate both data with uniformly dis-
tributed random keys and keys distributed according to the
Gaussian distribution. We will allow several transactions to
run concurrently. Also, we will perform several tests that
have large bulk insertions in them to stress-test the com-
bined TMVBT and B+-tree system.

The values we will measure are (1) the number of I/O
operations required for a single operation; (2) the num-
ber of I/O required for a transaction; (3) the size of the
database (in pages); and (4) the number of exclusive locks
and (5) latches held at the same time during a transaction.
Running time of transactions can also be measured, but we
expect that the number of I/O operations required is the
most important factor in the running time.

Based on the results of the experimental analysis, we can
determine how far the straightforward versioned B+-tree can
be used. We expect that at some point the performance of
range queries will deteriorate, and the more complex struc-
tures will be far superior. The optimality of the MVBT
structure suggests that the transactional MVBT with ver-
sioned B+-tree should perform reasonably well. However,
the simpler organization of an R-tree structure may well
compete with the combination of two separate structures.



We expect that the time-split B+-tree will have results sim-
ilar to the MVBT structure. However, because the MVBT
is optimal, we expect it to perform better with a wider range
of transactions.

9. FUTURE WORK
Our research interest is currently focused on designing

concurrency-control and ARIES-based recovery algorithms
for various database structures. In this paper, we have out-
lined the ongoing research for the dissertation of the first au-
thor. Our plan for the future is to research multidimensional
structures in general, to be used for either storing multidi-
mensional data or multiversion data. Our main focus is in
providing asymptotically optimal structures and algorithms
that can be used as general tools for multiple purposes.

10. CONCLUSIONS
Our research concentrates on designing, implementing and

evaluating a near-optimal and fully concurrent multiversion
database structure. The current database structures and al-
gorithms all seem to have some drawbacks which cause the
performance of the structure to deteriorate in some situa-
tions. We have initiated a research that is aimed at finding
a near-optimal database organization for storing multiver-
sion data. Our initial findings suggest that such a structure
can be constructed, at least if we relax the logarithmic-time-
bound requirements for the active transactions. Querying
for historical versions is guaranteed to be logarithmic for
the concurrent transactional MVBT structure. This struc-
ture is therefore optimal for applications that most often
read historical data. For applications that mostly access
current data, the time-split B+-tree and the multiversion
B+-tree should have performance ratings that are close to
each other for most situations.
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